This is the reference list from the book with active links to each accessible DOI.

[Adamo13] Adamo, C.; Jacquemin, D., “The calculations of excited-state properties with Time-Dependent Density Functional Theory,” Chemical Society Reviews, 2013, 42, 845-56, DOI: 10.1039/C2CS35394F.

[Adamo90] Adamo, C.; Cossi, M.; Rega, N.; Barone, V., “New Computational Strategies for the Quantum Mechanical Study of Biological Systems in Condensed Phases” in Theoretical Biochemistry: Processes and Properties of Biological Systems; ed. Eriksson, L. A., Theoretical and Computational Chemistry, vol. 9, Elsevier: New York, 1990

[Adamo99a] Adamo, C.; Barone, V., “Toward reliable density functional methods without adjustable parameters: The PBE0 model,” J. Chem. Phys., 1999, 110, 6158-69, DOI: 10.1063/1.478522.

[Adcock74] Adcock, W.; Gupta, B. D.; Khor, T. C.; Doddrell, D.; Jordan, D.; Kitching, W., “Concerning the Carbon-13 chemical shifts of benzocycloalkenes,” J. Am. Chem. Soc., 1974, 96, 1595, DOI: 10.1021/ja00812a054.

[Ali08] Ali, E. M. A.; Edwards, H. G. M.; Hargreaves, M. D.; Scowen, I. J., “In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy,” Anal. Chim. Acta, 2008, 615, 6372, DOI: 10.1016/j.aca.2008.03.051.

[Ali08a] Ali, E. M. A.; Edwards, H. G. M.; Hargreaves, M. D.; Scowen, I. J., “Raman spectroscopic investigation of cocain hydrochloride on human nail in a forensic context,” Anal. Bioanal. Chem., 2008, 390, 1159-66, DOI: 10.1007/s00216-007-1776-z.

[Almlof78] Almlöf, J.; Roos, B. O.; Siegbahn, P. E. M., “An MC-SCF computation scheme for large-scale calculations on polyatomic systems,” Comput. Chem., 1978, 2, 89, DOI: 10.1016/0097-8485(78)87007-7.

[Amovilli98] Amovilli, C.; Mennucci, B.; Floris, F. M., “MCSCF Study of the SN2 Menshutkin Reaction in Aqueous Solution within the Polarizable Continuum Model,” J. Phys. Chem. B, 1998, 102, 3023, DOI: 10.1021/jp9803945.

[Anderson01u] Anderson, W. P.; Foresman, J. B., “Use of Ab Initio Calculations to Help Interpret the UV-Visible Spectra of Aquavanadium Complexes: A New Look at an Old Experiment,” 2001, unpublished.

[Andrae90] Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; Preuss, H., “Energy-adjusted ab initio pseudopotentials for the 2nd and 3rd row transition-elements,” Theor. Chim. Acta, 1990, 77, 123-41, DOI: 10.1007/BF01114537.

[Aparicio07] Aparicio, S., “Computational study on the properties and structure of methyl lactate,” J. Phys. Chem. A, 2007, 111, 4671, DOI: 10.1021/jp070841t.

[Austin12] Austin, A.; Petersson, G. A.; Frisch, M. J.; Dobek, F. J.; Scalmani, G.; Throssell, K., “A density functional with spherical atom dispersion terms,” J. Chem. Theory and Comput., 2012, 8, 4989-5007, DOI: 10.1021/ct300778e.

[Autschbach02] Autschbach, J.; Ziegler, T.; van Gisbergen, S. J. A.; Baerends, E. J., “Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules,” J. Chem. Phys., 2002, 116, 6930-40, DOI: 10.1063/1.1436466.

[Baboul99] Baboul, A. G.; Curtiss, L. A.; Redfern, P. C.; Raghavachari, K., “Gaussian-3 theory using density functional geometries and zero-point energies,” J. Chem. Phys., 1999, 110, 7650-57, DOI: 10.1063/1.478676.

[Bak95] Bak, K. L.; Hansen, A. E.; Ruud, K.; Helgaker, T.; Olsen, J.; Jørgensen, P., “Ab Initio Calculation of Electronic Circular-Dichroism for trans-Cyclooctene Using London Atomic Orbitals,” Theoretical Chemistry Accounts, 1995, 90, 441-58, DOI: 10.1007/BF01113546.

[Balci08] Balci, K.; Akyuz, S., “A vibrational spectroscopic investigation on benzocaine molecule,” Vibr. Spect., 2008, 48 (2), 215-28, DOI: 10.1016/j.vibspec.2008.02.001.

[Barnes09] Barnes, E. C.; Petersson, G. A.; Montgomery Jr., J. A.; Frisch, M. J.; Martin, J. M. L., “Unrestricted Coupled Cluster and Brueckner Doubles Variations of W1 Theory,” J. Chem. Theory and Comput., 2009, 5, 2687-93, DOI: 10.1021/ct900260g.

[Barone02] Barone, V.; Peralta, J. E.; Contreras, R. H.; Snyder, J. P., “DFT Calculation of NMR JFF Spin-Spin Coupling Constants in Fluorinated Pyridines,” J. Phys. Chem. A, 2002, 106, 5607-12, DOI: 10.1021/jp020212d.

[Barone03] Barone, V.; Cossi, M.; Rega, N.; Scalmani, G., “Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model,” J. Comp. Chem., 2003, 24, 669-81, DOI: 10.1002/jcc.10189.

[Barone04] Barone, V., “Vibrational zero-point energies and thermodynamic functions beyond the harmonic approximation,” J. Chem. Phys., 2004, 120, 3059-65, DOI: 10.1063/1.1637580.

[Barone05] Barone, V., “Anharmonic vibrational properties by a fully automated second-order perturbative approach,” J. Chem. Phys., 2005, 122, 014108: 1-10, DOI: 10.1063/1.1824881.

[Barone09] Barone, V.; Bloino, J.; Biczysko, M.; Santoro, F., “Fully integrated approach to compute vibrationally resolved optical spectra: From small molecules to macrosystems,” J. Chem. Theory and Comput., 2009, 5, 540-54, DOI: 10.1021/ct8004744.

[Barone95a] Barone, V.; Adamo, C., “Density functional study of intrinsic and environmental effects in the tautomeric equilibrium of 2-pyridone,” J. Phys. Chem., 1995, 99, 15062-68, DOI: 10.1021/j100041a022.

[Barron04] Barron, L. D., Molecular Light Scattering and Optical Activity; 2nd ed.; Cambridge University Press: Cambridge, UK, 2004.

[Barron73] Barron, L. D.; Bogaard, M. P.; Buckingham, A. D., “Raman scattering of circularly polarized light by optically active molecules,” J. Am. Chem. Soc., 1973, 95, 603-05, DOI: 10.1021/ja00783a058.

[Bartlett07] Bartlett, R. J.; Musial, M., “Coupled-cluster theory in quantum chemistry,” Rev. Mod. Phys., 2007, 79, 291, DOI: 10.1103/RevModPhys.79.291.

[Bartlett78] Bartlett, R. J.; Purvis III, G. D., “Many-body perturbation-theory, coupled-pair many-electron theory, and importance of quadruple excitations for correlation problem,” Int. J. Quantum Chem., 1978, 14, 561-81, DOI: 10.1002/qua.560140504.

[Bas08] Bas, D. C.; Rogers, D. M.; Jensen, J., “Very Fast Prediction and Rationalization of pKa Values for Protein-Ligand Complexes,” Proteins, 2008, 73, 765-83, DOI: 10.1002/prot.22102.

[Bauernschmitt96a] Bauernschmitt, R.; Ahlrichs, R., “Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory,” Chem. Phys. Lett., 1996, 256, 454-64, DOI: 10.1016/0009-2614(96)00440-X.

[Baughcum81] Baughcum, S. I.; Duerst, R. W.; Rowe, W. F.; Smith, Z.; Wilson, E. B., “Microwave Spectroscopic Study of Malonadlehyde (3-Hydroxy-2-propenal). 2. Structure, Dipole Moment, and Tunneling,” J. Am. Chem. Soc., 1981, 103, 6296-303, DOI: 10.1021/ja00411a005.

[Baughcum84] Baughcum, S. I.; Smith, Z.; Wilson, E. B.; Duerst, R. W., “Microwave Spectroscopic Study of Malonaldehyde. 3. Vibration-Rotation Interaction and One-Dimensional Model for Proton Tunneling,” J. Am. Chem. Soc., 1984, 106, 2260-65, DOI: 10.1021/ja00320a007.

[Bauschlicher86] Bauschlicher Jr., C. W.; Taylor, P. R., “Benchmark full configuration-interaction calculations on H2O, F, and F,” J. Chem. Phys., 1986, 85, 2779, DOI: 10.1063/1.451034.

[Bauschlicher95] Bauschlicher Jr., C. W.; Partridge, H., “Modification of the Gaussian-2 approach using density functional theory,” J. Chem. Phys., 1995, 103, 1788-91, DOI: 10.1063/1.469752.

[Bearpark94] Bearpark, M. J.; Robb, M. A.; Schlegel, H. B., “A Direct Method for the Location of the Lowest Energy Point on a Potential Surface Crossing,” Chem. Phys. Lett., 1994, 223, 269-74, DOI: 10.1016/0009-2614(94)00433-1.

[Becke14] Becke, A. D., “Perspective: Fifty years of density-functional theory in chemical physics,” The Journal of Chemical Physics, 2014, 140, 18A301, DOI: 10.1063/1.4869598.

[Becke88b] Becke, A. D., “Density-functional exchange-energy approximation with correct asymptotic-behavior,” Phys. Rev. A, 1988, 38, 3098-100, DOI: 10.1103/PhysRevA.38.3098.

[Becke93] Becke, A. D., “A new mixing of Hartree-Fock and local density-functional theories,” J. Chem. Phys., 1993, 98, 1372-77, DOI: 10.1063/1.464304.

[Becke93a] Becke, A. D., “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., 1993, 98, 5648-52, DOI: 10.1063/1.464913.

[Bender67] Bender, M. L.; Heck, H. d. A., “Carbonyl Oxygen Exchange in General Base Catalyzed Ester Hydrolysis,” J. Am. Chem. Soc., 1967, 89, 1211, DOI: 10.1021/ja00981a030.

[Berkowitz69] Berkowitz, J.; Chupka, W. A.; Walter, T. A., “Photoionization of HCN: the electron affinity and heat of formation of CN,” J. Chem. Phys., 1969, 50, 1497, DOI: 10.1063/1.1671233.

[Bernardi84] Bernardi, F.; Bottini, A.; McDougall, J. J. W.; Robb, M. A.; Schlegel, H. B., “MCSCF gradient calculation of transition structures in organic reactions,” Far. Symp. Chem. Soc., 1984, 19, 137-47, DOI: 10.1039/FS9841900137.

[Bernardi96] Bernardi, F.; Olivucci, M.; Robb, M. A., “Potential energy surface crossings in organic photochemistry,” Chem. Soc. Reviews, 1996, 25, 321, DOI: 10.1039/CS9962500321

[Biedermann99] Biedermann, P. U.; Cheeseman, J. R.; Frisch, M. J.; Schurig, V.; Gutman, I.; Agranat, I., “Conformational Spaces and Absolute Configurations of Chiral Fluorinated Inhalation Anaesthetics. A Theoretical Study,” J. Org. Chem., 1999, 64, 3878-84, DOI: 10.1021/jo9821325.

[Binning90] Binning Jr., R. C.; Curtiss, L. A., “Compact contracted basis-sets for 3rd-row atoms – Ga-Kr,” J. Comp. Chem., 1990, 11, 1206-16, DOI: 10.1002/jcc.540111013.

[Blanksby03] Blanksby, S. J.; Ellison, G. B., “Bond Dissociation Energies of Organic Molecules,” Acc. Chem. Res., 2003, 36, 255-63, DOI: 10.1021/ar020230d.

[Blaudeau97] Blaudeau, J.-P.; McGrath, M. P.; Curtiss, L. A.; Radom, L., “Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca,” J. Chem. Phys., 1997, 107, 5016-21, DOI: 10.1063/1.474865.

[Bloino12] Bloino, J.; Barone, V., “A second-order perturbation theory route to vibrational averages and transition properties of molecules: General formulation and application to infrared and vibrational circular dichroism spectroscopies,” J. Chem. Phys., 2012, 136, 124108, DOI: 10.1063/1.3695210.

[Bock81a] Bock, H.; Solouki, B., “Photoelectron spectra and electron properties: Real-time gas analysis in flow systems,” Angew. Chem. Int. Ed., 1981, 20, 427, DOI: 10.1002/anie.198104271.

[Bock83] Bock, H.; Dammel, R.; Aygen, S., “Gas-phase reactions. 36. Pyrolysis of vinyl azide,” J. Am. Chem. Soc., 1983, 105, 7681-85, DOI: 10.1021/ja00364a037.

[Bock88] Bock, H.; Dammel, R., “Gas-Phase Reactions. 66. Gas-Phase Pyrolyses of Alkyl Azides: Experimental Evidence for Chemical Activation,” J. Am. Chem. Soc., 1988, 110, 5261, DOI: 10.1021/ja00224a004.

[Boese04] Boese, A. D.; Martin, J. M. L., “Development of Density Functionals for Thermochemical Kinetics,” J. Chem. Phys., 2004, 121, 3405-16, DOI: 10.1063/1.1774975.

[Born27] Born, M.; Oppenheimer, J. R., “Zur Quantentheorie der Molekeln,” Phys. Rev. précis (22 pgs):, 1927, 389, 0457-84, DOI: 10.1002/andp.19273892002.

[Bouwens96] Bouwens, R. J.; Hammerschmidt, J. A.; Grzeskowiak, M. M.; Stegink, T. A.; Yorba, P. M.; Polik, W. F., “Pure vibrational spectroscopy of S0 formaldehyde by dispersed fluorescence,” J. Chem. Phys., 1996, 104, 460, DOI: 10.1063/1.470844.

[Bowen83] Bowen, K. H.; Liesegang, G. W.; Sanders, R. A.; Herschbach, D. W., “Electron Attachment to Molecular Clusters by Collisional Charge Transfer,” J. Chem. Phys., 1983, 87, 557-65, DOI: 10.1021/j100227a009.

[Boys70] Boys, S. F.; Bernardi, F., “Calculation of Small Molecular Interactions by Differences of Separate Total Energies – Some Procedures with Reduced Errors,” Molecular Physics, 1970, 19, 553, DOI: 10.1080/00268977000101561.

[Bradforth93] Bradforth, S. E.; Kim, E. H.; Arnold, D. W.; Neumark, D. M., “Photoelectron spectroscopy of CN, NCO, and NCS,” J. Chem. Phys., 1993, 98, 800, DOI: 10.1063/1.464244.

[Brancato06] Brancato, G.; Rega, N.; Barone, V., “A quantum mechanical/molecular dynamics/mean field study of acrolein in aqueous solution: Analysis of H bonding and bulk effects on spectroscopic properties,” J. Chem. Phys., 2006, 125, 164515, DOI: 10.1063/1.2359723.

[Brillouin34] Brillouin, L., “Les champs self-consistents de Hartree et de Fock,” Actualités Scientifiques et Industrielles, 1934, 159.

[Buckingham67] “Permanent & Induced Molecular Moments and Long-Range Intermolecular Forces” in Buckingham, A. D., Advances in Chemical Physics, Wiley Interscience: Hoboken, NJ, 1967, Vol. 12, pp. 107.

[Buckingham67a] Buckingham, A. D.; Orr, B. J., “Molecular hyperpolarisabilities,” Q. Rev. Chem. Soc., 1967, 21, 195-212, DOI: 10.1039/QR9672100195.

[Buckingham87] Buckingham, A. D.; Fowler, P. W.; Galwas, P. A., “Velocity-dependent property surfaces and the theory of vibrational circular dichroism,” Chem. Phys., 1987, 112, 1-14, DOI: 10.1016/0301-0104(87)85017-6.

[Bulliard99] Bulliard, C.; Allan, M.; Wirtz, G.; Haselbach, E.; Zachariasse, K. A.; Detzer, N.; Grimme, S., “Electron Energy Loss and DFT/SCI Study of the Singlet and Triplet Excited States of Aminobenzonitriles and Benzoquinuclidines: Role of the Amino Group Twist Angle,” J. Phys. Chem. A, 1999, 103, 7766, DOI: 10.1021/jp990922s.

[Burk07] Burk, R., “Paramagnetism of Liquid Oxygen” , 2007;

[Bytautas04] Bytautas, L.; Ruedenberg, K., “Correlation energy extrapolation by intrinsic scaling. II. The water and the nitrogen molecule,” J. Chem. Phys., 2004, 121, 10919, DOI: 10.1063/1.1811604.

[Califano76] Califano, S., Vibrational States; Wiley: London, 1976.

[Cami10] Cami, J.; Bernard-Salas, J.; Peeters, E.; Malek, S. E., “Detection of C60 and C70 in a Young Planetary Nebula,” Science, 2010, 329, 1180, DOI: 10.1126/science.1192035

[Cances97] Cancès, E.; Mennucci, B.; Tomasi, J., “A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics,” J. Chem. Phys., 1997, 107, 3032-41, DOI: 10.1063/1.474659.

[Cardini94] Cardini, G.; Bini, R.; Salvi, P. R.; Schettino, V., “Infrared spectrum of two fullerene derivatives: C60O and C61H2,” The Journal of Chemical Physics, 1994, 98, 9966-71, DOI: 10.1021/j100091a006.

[Caricato12b] Caricato, M., “Absorption and Emission Spectra of Solvated Molecules with the EOM-CCSD-PCM Method,” J. Chem. Theory and Comput., 2012, 8, 4494, DOI: 10.1021/ct3006997.

[Caricato13] Caricato, M.; Lipparini, F.; Scalmani, G.; Cappelli, C.; Barone, V., “Vertical electronic excitations in solution with the EOM-CCSD method combined with a polarizable explicit/implicit solvent model,” J. Chem. Theory and Comput., 2013, 9 , 3035, DOI: 10.1021/ct4003288.

[Caricato13b] Caricato, M., “Implementation of the CCSD-PCM linear response function for frequency dependent properties in solution: Application to polarizability and specific rotation,” J. Chem. Phys., 2013, 139, 114103 1-6, DOI: 10.1063/1.4821087.

[Caricato14] Caricato, M., “A corrected-linear response formalism for the calculation of electronic excitation energies of solvated molecules with the CCSD-PCM method,” Comput. Theoret. Chem., 2014, 1040-1041, 99-105, DOI: 10.1016/j.comptc.2014.02.001.

[Carroll82] Carroll, F. I.; Coleman, M. L.; Lewin, A. H., “Syntheses and conformational analyses of isomeric cocaines: a proton and carbon-13 NMR study,” J. Org. Chem., 1982, 47, 13-19, DOI: 10.1021/jo00340a004.

[Case14] Case, D. A.; Babin, V.; Berryman, R. M.; Cai, Q.; Cerutti, D. S.; Cheatham III, T. E.; Darden, T. A.; Duke, R. E.; Gohlke, H.; Goetz, A. W.; Gusarov, S.; Homeyer, N.; Janowski, P.; Kaus, J.; Kolossváry, I.; Kovalenko, A.; Lee, T. S.; LeGrand, S.; Luchko, T.; Luo, R.; Madej, B.; Merz, K. M.; Paesani, F.; Roe, D. R.; Roitberg, A.; Sagui, C.; Salomon-Ferrer, R.; Seabra, G.; Simmerling, C. L.; Smith, W.; Swails, J.; Walker, R. C.; Wang, J.; Wolf, R. M.; Wu, X.; Kollman, P. A., AMBER14, University of California, San Francisco, 2014.

[Casida98] Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R., “Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold,” J. Chem. Phys., 1998, 108, 4439-49, DOI: 10.1063/1.475855

[Castejon99] Castejon, H.; Wiberg, K. B., “Solvent Effects on Methyl Transfer Reactions. 1. The Menshutkin Reaction,” J. Am. Chem. Soc., 1999, 121, 2139, DOI: 10.1021/ja983736t.

[Chai08] Chai, J.-D.; Head-Gordon, M., “Systematic optimization of long-range corrected hybrid density functionals,” J. Chem. Phys., 2008, 128, 084106, DOI: 10.1063/1.2834918.

[Champagne98] Champagne, B.; Perpète, E. A.; van Gisbergen, S. J. A.; Baerends, E.-J.; Snijders, J. G.; Soubra-Ghaoui, C.; Robins, K. A.; Kirtman, B., “Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers: An ab initio investigation of polyacetylene chains,” J. Chem. Phys., 1998, 109, 10489, DOI: 10.1063/1.477731.

[Chase98] Chase Jr., M. W., NIST-JANAF Thermochemical Tables; 4th ed.; American Inst. of Physics: New York, 1998; Vol. 1-2.

[Chattopadhyay10] Chattopadhyay, S.; Chaudyhuri, R. K.; Mahapatra, U. S., “Studies on m-benzyne and phenol via improved virtual orbital-complete active space configuration interaction (IVO-CASCI) analytical gradient method,” Chem. Phys. Lett., 2010, 491, 102-08, DOI: 10.1016/j.cplett.2010.04.005.

[Cheeseman11] Cheeseman, J. R.; Shaik, M. S.; Popelier, P. L. A.; Blanch, E. W., “Calculation of Raman optical activity spectra of methyl-β-D-glucose incorporating a full molecular dynamics simulation of hydration effects,” J. Am. Chem. Soc., 2011, 133, 4991-97, DOI: 10.1021/ja110825z.

[Cheeseman11a] Cheeseman, J. R.; Frisch, M. J., “Basis set dependence of vibrational raman and raman optical activity intensities,” J. Chem. Theory and Comput., 2011, 7, 3323-34, DOI: 10.1021/ct200507e.

[Cheeseman96] Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J., “A Comparison of Models for Calculating Nuclear Magnetic Resonance Shielding Tensors,” J. Chem. Phys., 1996, 104, 5497-509, DOI: 10.1063/1.471789.

[Cheeseman96a] Cheeseman, J. R.; Frisch, M. J.; Devlin, F. J.; Stephens, P. J., “Ab Initio Calculation of Atomic Axial Tensors and Vibrational Rotational Strengths Using Density Functional Theory,” Chem. Phys. Lett., 1996, 252, 211-20, DOI: 10.1016/0009-2614(96)00154-6.

[Chen10] Chen, V. B.; Arendall III, W. B.; Headd, J. J.; Keedy, D. A.; Immormino, R. M.; Kapral, G. J.; Murray, L. W.; Richardson, J. S.; Richardson, D. C., “MolProbity: all-atom structure validation for macromolecular crystallography,” Acta Crystallogr., 2010, D66, 12-21, DOI: 10.1107/S0907444909042073.

[Chiara92] Chiara, J. L.; Gómez-Sánchez, A.; Bellanato, J. J., “Spectral Properties and Isomerism of Nitroenamines 3,” J. Chem. Soc., Perkin Trans. 2, 1992, 5, 787, DOI: 10.1039/P29880001691

[Cho07] Cho, L.-L., “Identification of textile fiber by Raman microspectroscopy,” Forensic Science J., 2007, 6, 55-62.

[Chung15] Chung, L. W.; Sameera, W. M. C.; Ramozzi, R.; Page, A. J.; Hatanaka, M.; Petrova, G. P.; Harris, T. V.; Li, X.; Ke, Z.; Liu, F., “The ONIOM Method and Its Applications,” Chemical reviews, 2015.

[Cizek69] Cížek, J., “On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms And Molecules” in Advances in Chemical Physics: Correlation Effects in Atoms and Molecules; ed. Hariharan, P. C., Wiley Interscience: New York, 1969, pp. 35-89, DOI: 10.1002/9780470143599.

[Clabo88] Clabo, D. A.; Allen, W. D.; Remington, R. B.; Yamaguchi, Y.; Schaefer III, H. F., “A systematic study of molecular vibrational anharmonicity and vibration-rotation interaction by self-consistent-field higher-derivative methods – asymmetric-top molecules,” Chem. Phys., 1988, 123, 187-239, DOI: 10.1016/0301-0104(88)87271-9.

[Clemente10] Clemente, F.; Vreven, T.; Frisch, M. J., “Getting the Most out of ONIOM: Guidelines and Pitfalls” in Quantum Biochemistry; ed. Matta, C., Wiley VCH: Weinheim, 2010, pp. 61-84, DOI: 10.1002/9783527629213.ch2.

[Condon26] Condon, E. U., “A Theory of Intensity Distribution in Band Systems,” Phys. Rev., 1926, 28, 1182, DOI: 10.1103/PhysRev.28.1182.

[Condon37] Condon, E. U., “Theories of optical rotatory power,” Rev. Mod. Phys., 1937, 9, 432-57, DOI: 10.1103/RevModPhys.9.432

[Cook76] Cook, M. J.; Katritzky, A. R.; Hepler, L. G.; Matsui, T., “Heats of solution and tautomeric equilibrium constants. The 2-pyridone:2-hydroxypyridine equilibrium in non-aqueous media,” Tetrahedron Lett., 1976, 17, 2685, DOI: 10.1016/S0040-4039(00)77795-1.

[Cooper80] Cooper, J. W., Spectroscopic Techniques for Organic Chemists; Wiley-Interscience: New York, 1980, pp. 376.

[Cornell95] Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz Jr., K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A., “A second generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules,” J. Am. Chem. Soc., 1995, 117, 5179-97, DOI: 10.1021/ja00124a002.

[Cossi00] Cossi, M.; Barone, V., “Solvent effect on vertical electronic transitions by the polarizable continuum model,” J. Chem. Phys., 2000, 112, 2427-35, DOI: 10.1063/1.480808.

[Cossi96] Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J., “Ab initio study of solvated molecules: A new implementation of the polarizable continuum model,” Chem. Phys. Lett., 1996, 255, 327-35, DOI: 10.1016/0009-2614(96)00349-1.

[Costentin06] Costentin, C.; Robert, M.; Savéant, J.-M., “Electrochemical and Homogeneous Proton-Coupled Electron Transfers: Concerted Pathways in the One-Electron Oxidation of a Phenol Coupled with an Intramolecular Amine-Driven Proton Transfer,” J. Am. Chem. Soc., 2006, 128, 4552, DOI: 10.1021/ja060527x.

[Coto11] Coto, P. B.; Serrano-Andrés, L.; Gustavsson, T.; Fujiwara, T.; Lim, E. C., “Intramolecular charge transfer and dual fluorescence of 4-(dimethylamino)benzonitrile: ultrafast branching followed by a two-fold decay mechanism,” Phys. Chem. Chem. Phys., 2011, 13, 15183-88, DOI: 10.1039/c1cp21089k.

[Cox84] CODATA Key Values for Thermodynamics; Cox, J. D.; Wagnam, D. D.; Medvedev, V. A., Eds.; Hemisphere: New York, 1984.

[Craciun10] Craciun, R.; Picone, D.; Long, R. T.; Li, S.; Dixon, D. A.; Peterson, K. A.; Christe, K. O., “Third Row Transition Metal Hexafluorides, Extraordinary Oxidizers, and Lewis Acids: Electron Affinities, Fluoride Affinities, and Heats of Formation of WF6, ReF6, OsF6, IrF6, PtF6, and AuF6,” Inorg. Chem., 2010, 49, 1956-70, DOI: 10.1021/ic901967h.

[Craig06] Craig, N. C.; Groner, P.; McKean, D. C., “Equilibrium structures for butadiene and ethylene: Compelling evidence for pi-electron delocalization in butadiene,” J. Phys. Chem. A, 2006, 110, 7461, DOI: 10.1021/jp060695b.

[Cramer04] Cramer, C. J., Essentials of Computational Chemistry: Theories and Models; 2nd ed.; Wiley & Sons, 2004.

[CRC00] CRC Handbook of Chemistry and Physics; 81st ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 2000.

[Curtiss00a] Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A., “Assessment of Gaussian-3 and density functional theories for a larger experimental test set,” J. Chem. Phys., 2000, 112, 7374-83.

[Curtiss02a] Curtiss, L. A.; Raghavachari, K., “Gaussian-3 and related methods for accurate thermochemistry,” Theoretical Chemistry Accounts, 2002, 108, 61-70, DOI: 10.1007/s00214-002-0355-9.

[Curtiss05] Curtiss, L. A.; Redfern, P. C.; Raghavachari, K., “Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies,” J. Chem. Phys., 2005, 123, 124107 1-12, DOI: 10.1063/1.2039080.

[Curtiss07] Curtiss, L. A.; Redfern, P. C.; Raghavachari, K., “Gaussian-4 theory,” J. Chem. Phys., 2007, 126, 084108, DOI: 10.1063/1.2436888.

[Curtiss07a] Curtiss, L. A.; Redfern, P. C.; Raghavachari, K., “Gaussian-4 theory using reduced order perturbation theory,” J. Chem. Phys., 2007, 127, 124105, DOI: 10.1063/1.2770701.

[Curtiss90] Curtiss, L. A.; Jones, C.; Trucks, G. W.; Raghavachari, K.; Pople, J. A., “Gaussian-1 theory of molecular energies for second-row compounds,” J. Chem. Phys., 1990, 93, 2537-45, DOI: 10.1063/1.458892.

[Curtiss95] Curtiss, L. A.; McGrath, M. P.; Blaudeau, J.-P.; Davis, N. E.; Binning Jr., R. C.; Radom, L., “Extension of Gaussian-2 theory to molecules containing third-row atoms Ga-Kr,” J. Chem. Phys., 1995, 103, 6104-13, DOI: 10.1063/1.470438.

[Curtiss97] Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A., “Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation,” J. Chem. Phys., 1997, 106, 1063-79.

[Curtiss98] Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A., “Gaussian-3 (G3) theory for molecules containing first and second-row atoms,” J. Chem. Phys., 1998, 109, 7764-76, DOI: 10.1063/1.477422.

[Cybulski07] Cybulski, H.; Sadlej, J., “On the calculations of the vibrational Raman spectra of small water clusters,” Chem. Phys., 2007, 342, 163, DOI: 10.1016/j.chemphys.2007.09.058.

[Dapprich99] Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J., “A New ONIOM Implementation in Gaussian 98. 1. The Calculation of Energies, Gradients and Vibrational Frequencies and Electric Field Derivatives,” J. Mol. Struct. (Theochem), 1999, 462, 1-21, DOI: 10.1016/S0166-1280(98)00475-8.

[Das08] Das, U.; Raghavachari, K., “Al5SO4: A Superatom with Potential for New Materials Design,” J. Chem. Theory and Comput., 2008, 4, 2011-19, DOI: 10.1021/ct800232b.

[David08] David, J.; Fuentealba, P.; Restrepo, A., “Relativistic effects on the hexafluorides of group 10 metals,” Chem. Phys. Lett., 2008, 457, 42-44, DOI: 10.1016/j.cplett.2008.04.003.

[Davidson96] Davidson, E. R., “Comment on ‘Comment on Dunning’s correlation-consistent basis sets’,” Chem. Phys. Lett., 1996, 260, 514-18, DOI: 10.1016/0009-2614(96)00917-7.

[Debbert00] Debbert, S. L.; Cramer, C. J., “Systematic comparison of the benzynes, pyridynes, and pyridynium cations and characterization of the Bergman cyclization of Z-but-1-en-3-yn-1-yl isonitrile to the meta diradical 2,4-pyridyne,” Int. J. Mass Spectrom., 2000, 201, 1-15, DOI: 10.1016/S1387-3806(00)00160-3.

[Debie08] Debie, E.; Jaspers, L.; Bultinck, P.; Herrebout, W.; Veken, B. V. D., “Induced solvent chirality: A VCD study of camphor in CDCl3,” Chem. Phys. Lett., 2008, 450, 426-30, DOI: 10.1016/j.cplett.2007.11.064.

[DelRio08] del Rio, D.; Resa, I.; Rodríguez, A.; Sánchez, L.; Köppe, R.; Downs, A. J.; Tang, C. Y.; Carmona, E., “IR and Raman Characterization of the Zincocenes (η5-C5Me5)2Zn2 and (η5-C5Me5)(η1-C5Me5)Zn,” J. Phys. Chem. A, 2008, 112, 10516-25, DOI: 10.1021/jp805291e.

[Deng06] Deng, W.; Cheeseman, J. R.; Frisch, M. J., “Calculation of Nuclear Spin-Spin Coupling Constants of Molecules with First and Second Row Atoms in Study of Basis Set Dependence,” J. Chem. Theory and Comput., 2006, 2, 1028-37, DOI: 10.1021/ct600110u.

[Dennington09] Dennington, R.; Keith, T. A.; Millam, J., GaussView 5, Semichem, Inc., Shawnee Mission, KS, 2009.

[Devlin96] Devlin, F. J.; Stephens, P. J.; Cheeseman, J. R.; Frisch, M. J., “Prediction of vibrational circular dichroism spectra using density functional theory: Camphor and fenchone,” J. Am. Chem. Soc., 1996, 118, 6327-28.

[Devlin97] Devlin, F. J.; Stephens, P. J.; Cheeseman, J. R.; Frisch, M. J., “Ab initio prediction of vibrational absorption and circular dichroism spectra of chiral natural products using density functional theory: Camphor and fenchone,” J. Phys. Chem. A, 1997, 101, 6322-33, DOI: 10.1021/jp9712359.

[Devlin97a] Devlin, F. J.; Stephens, P. J.; Cheeseman, J. R.; Frisch, M. J., “Ab initio prediction of vibrational absorption and circular dichroism spectra of chiral natural products using density functional theory: α-pinene,” J. Phys. Chem. A, 1997, 101, 9912-24, DOI: 10.1021/jp971905A.

[Devlin99] Devlin, F. J.; Stephens, P. J., “Conformational Analysis Using ab initio Vibrational Spectroscopy: 3-Methylcyclohexanone,” J. Am. Chem. Soc., 1999, 121, 7413-14, DOI: 10.1021/ja9910513.

[Diels28] Diels, O.; Alder, K., “Synthesen in der hydroaromatischen Reihe,” Annalen der Chemie, 1928, 460, 98, DOI: 10.1002/jlac.19284600106.

[Dirac30] Dirac, P. A. M., “Note on Exchange Phenomena in the Thomas Atom,” Math. Proc. Camb. Phil. Soc., 1930, 26, 376, DOI: 10.1017/S0305004100016108.

[Ditchfield71] Ditchfield, R.; Hehre, W. J.; Pople, J. A., “Self-Consistent Molecular Orbital Methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules,” J. Chem. Phys., 1971, 54, 724, DOI: 10.1063/1.1674902

[Ditchfield74] Ditchfield, R., “Self-consistent perturbation theory of diamagnetism. 1. Gauge-invariant LCAO method for N.M.R. chemical shifts,” Molecular Physics, 1974, 27, 789-807, DOI: 10.1080/00268977400100711.

[Doering69] Doering, J. P., “Low-Energy Electron-Impact Study of the First, Second, and Third Triplet States of Benzene,” J. Chem. Phys., 1969, 51, 2866, DOI: 10.1063/1.1672424.

[Dolinsky04] Dolinsky, T. J.; Nielsen, J. E.; McCammon, J. A.; Baker, N. A., “PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations,” Nucleic Acids Res., 2004, 32 (suppl. 2), W665-67, DOI: 10.1093/nar/gkh381.

[Domcke11] Conical Intersections: Theory, Computation and Experiment; Domcke, W.; Yarkony, D. R.; Köppel, H., Eds.; World Scientific Publishing, 2011; Vol. 17.

[Drakenberg76] Drakenberg, T.; Sommer, J. M.; Jost, R., “13C nuclear magnetic resonance studies on acetophenones: Barriers to internal rotation,” Magn. Res. Chem., 1976, 8, 579-81, DOI: 10.1002/mrc.1270081110

[Duchovic82] Duchovic, R. J.; Hase, W. L.; Schlegel, H. B.; Frisch, M. J.; Raghavachari, K., “Ab initio potential energy curve for CH bond dissociation in methane,” Chem. Phys. Lett., 1982, 89, 120-25, DOI: 10.1016/0009-2614(82)83386-1.

[Duncan97] Duncan, T. M., Principal Components of Chemical Shift Tensors: A compilation; 2nd ed.; Farragut Press: Madison, WI, 1997.

[Dunlap00] Dunlap, B. I., “Robust and variational fitting: Removing the four-center integrals from center stage in quantum chemistry,” J. Mol. Struct. (Theochem), 2000, 529, 37-40, DOI: 10.1016/S0166-1280(00)00528-5.

[Dunlap83] Dunlap, B. I., “Fitting the Coulomb Potential Variationally in Xα Molecular Calculations,” J. Chem. Phys., 1983, 78, 3140-42, DOI: 10.1063/1.445228.

[Dunning76] Dunning Jr., T. H.; Hay, P. J., “Gaussian Basis Sets for Molecular Calculations” in Methods of Electronic Structure Theory; ed. Schaefer III, H. F., Modern Theoretical Chemistry, vol. 3, Plenum: New York, 1976, pp. 1-28, DOI: 10.1007/978-1-4757-0887-5_1.

[Dunning89] Dunning Jr., T. H., “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen,” J. Chem. Phys., 1989, 90, 1007-23, DOI: 10.1063/1.456153.

[Dupradeau10] Dupradeau, F.-Y.; Pigache, A.; Zaffran, T.; Savineau, C.; Lelong, R.; Grivel, N.; Lelong, D.; Rosanski, W.; Cieplak, P., “The R.E.D. tools: Advances in RESP and ESP charge derivation and force field library building,” Phys. Chem. Chem. Phys., 2010, 12, 7821-39, DOI: 10.1039/c0cp00111b

[Dykstra77] Dykstra, C. E., “Examination of Brueckner condition for selection of molecular-orbitals in correlated wavefunctions,” Chem. Phys. Lett., 1977, 45, 466-69, DOI: 10.1016/0009-2614(77)80065-1

[Ehara02] Ehara, M.; Ishida, M.; Toyota, K.; Nakatsuji, H., “SAC-CI General-R Method: Theory and Applications to the Multi-Electron Processes” in Reviews of Modern Quantum Chemistry; ed. Sen, K. D., World Scientific: Singapore, 2002, pp. 293, DOI: 10.1142/9789812775702_0011.

[Ernzerhof99] Ernzerhof, M.; Scuseria, G. E., “Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional,” The Journal of Chemical Physics, 1999, 110, 5029-36, DOI: 10.1063/1.478401.

[Eyring31] Eyring, H.; Polanyi, M., “On Simple Gas Reactions,” Zeitschrift für Physikalische Chemie, 1931, 227, 1221-46, DOI: 10.1524/zpch.2013.9023.

[Eyring35] Eyring, H., “The activated complex in chemical reactions,” J. Chem. Phys., 1935, 3, 107-15, DOI: 10.1063/1.1749604.

[Field90] Field, M. J.; Bash, P. A.; Karplus, M., “A Combined Quantum-Mechanical and Molecular Mechanical Potential for Molecular-Dynamics Simulations,” J. Comp. Chem., 1990, 11, 700-33, DOI: 10.1002/jcc.540110605.

[Fillet56] Fillet, P.; Letort, M., Journal de Chimie Physique et de Physico-Chimie Biologique, 1956, 53, 8.

[Finkelmeier78] Finkelmeier, H.; Luettke, W., “Carbon-13-carbon-13 and carbon-13-hydrogen coupling constants in 2,2,4,4-tetramethylbicyclo[1.1.0]butane,” J. Am. Chem. Soc., 1978, 100, 6261-62, DOI: 10.1021/ja00487a065.

[Finnerty10] Finnerty, J.; Koch, R., “Accurate Calculated Optical Properties of Substituted Quaterphenylene Nanofibers,” J. Phys. Chem. A, 2010, 114, 474-80, DOI: 10.1021/jp906233d.

[Fischer89] Fischer, B.; Wijkens, P.; Boersma, J.; van Koten, G.; Smeets, W. J. J.; Spek, A. L.; Budzelaar, P. H. M., “The unusual solid state structures of the penta-substituted bis(cyclopentadienyl)zinc compounds bis(pentamethylcyclopentadienyl)zinc and bis(tetramethylpenylcyclopentadienyl)zinc,” J. Organomet. Chem., 1989, 376, 223-33, DOI: 10.1016/0022-328X(89)85132-0.

[Fock30] Fock, V., “‘Self-consistent field’ with interchange for sodium,” Zeitschrift für Physik, 1930, 62, 795.

[Fogarasi92] Fogarasi, G.; Zhou, X.; Taylor, P.; Pulay, P., “The calculation of ab initio molecular geometries: Efficient optimization by natural internal coordinates and empirical correction by offset forces,” J. Am. Chem. Soc., 1992, 114, 8191-201, DOI: 10.1021/ja00047a032.

[Foresman13] Foresman, J. B.; Clarke, D. C., “Substituent Interactions in Aromatic Rings: Student Exercises Using FT-NMR And Electronic Structure Calculations” in NMR Spectroscopy in the Undergraduate Curriculum; ed. Soulsby, D., Anna, L., Wallner, T., ACS Symposium Series, ACS: Washington, D.C., 2013, DOI: 10.1021/bk-2013-1128.ch012.

[Foresman92] Foresman, J. B.; Head-Gordon, M.; Pople, J. A.; Frisch, M. J., “Toward a Systematic Molecular Orbital Theory for Excited States,” J. Phys. Chem., 1992, 96, 135-49, DOI: 10.1021/j100180a030.

[Foresman96] Foresman, J. B.; Keith, T. A.; Wiberg, K. B.; Snoonian, J.; Frisch, M. J., “Solvent Effects. 5. The Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab initio Reaction Field Calculations,” J. Phys. Chem., 1996, 100, 16098-104, DOI: 10.1021/jp960488j.

[Foster80] Foster, J. P.; Weinhold, F., “Natural hybrid orbitals,” J. Am. Chem. Soc., 1980, 102, 7211-18, DOI: 10.1021/ja00544a007.

[Franck26] Franck, J.; Dymond, E. G., “Elementary processes of photochemical reactions,” Trans. Faraday Soc., 1926, 21, 536, DOI: 10.1039/TF9262100536

[Frey11] Frey, J. T.; Doren, D. J., TubeGen 3.4, University of Delaware, Newark DE, 2011.

[Frisch85c] Frisch, M. J.; Scheiner, A. C.; Schaefer III, H. F.; Binkley, J. S., “Malonaldehyde equilibrium geometry: A major structural shift due to the effects of electron correlation,” J. Chem. Phys., 1985, 82, 4194, DOI: 10.1063/1.448861.

[Frisch92] Frisch, M. J.; Ragazos, I. N.; Robb, M. A.; Schlegel, H. B., “An Evaluation of 3 Direct MC-SCF Procedures,” Chem. Phys. Lett., 1992, 189, 524-28, DOI: 10.1016/0009-2614(92)85244-5.

[Frosch52] Frosch, R. A.; Foley, H. M., “Magnetic Hyperfine Structure in Diatomic Molecules,” Physical Review, 1952, 88, 1337-49, DOI: 10.1103/PhysRev.88.1337.

[Frum91] Frum, C. I.; Rolf Engleman, J.; Hedderich, H. G.; Bernath, P. F., “The infrared emission spectrum of gas-phase C60 (Buckminsterfullerene),” Chem. Phys. Lett., 1991, 176, 504-08, DOI: 10.1016/0009-2614(91)90245-5.

[Fuentealba82] Fuentealba, P.; Preuss, H.; Stoll, H.; Szentpály, L. v., “A Proper Account of Core-polarization with Pseudopotentials – Single Valence-Electron Alkali Compounds,” Chem. Phys. Lett., 1982, 89, 418-22, DOI: 10.1016/0009-2614(82)80012-2.

[Fuentealba83] Fuentealba, P.; Stoll, H.; Szentpály, L. v.; Schwerdtfeger, P.; Preuss, H., “On the reliability of semi-empirical pseudopotentials: Simulation of Hartree-Fock and Dirac-Fock results,” Journal of Physics B: Atomic and Molecular Physics, 1983, 16, L323-28, DOI: 10.1088/0022-3700/16/11/001.

[Fukui81] Fukui, K., “The path of chemical-reactions: The IRC approach,” Acc. Chem. Res., 1981, 14, 363-68, DOI: 10.1021/ar00072a001.

[Furche02] Furche, F.; Ahlrichs, R., “Adiabatic time-dependent density functional methods for excited state properties,” J. Chem. Phys., 2002, 117, 7433-47, DOI: 10.1063/1.1508368.

[G09] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009.

[Galwas83] Galwas, P. A., On the Distribution of Optical Polarization in Molecules [PhD Thesis], University of Cambridge (Cambridge, UK), 1983.

[Gamot85] Gamot, A. P.; Vercoten, G.; Fleury, G., “Étude par spectroscopie Raman du chlorhydrate de cocaine,” Talanta, 1985, 32, 363-72, DOI: 10.1016/0039-9140(85)80100-4.

[Gao91] Gao, J., “A priori Computation of a Solvent-enhanced SN2 Reaction Profile in Water: The Menshutkin Reaction,” J. Am. Chem. Soc., 1991, 113, 7796-97, DOI: 10.1021/ja00020a070.

[Gauss92] Gauss, J., “Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals,” Chem. Phys. Lett., 1992, 191, 614-20, DOI: 10.1016/0009-2614(92)85598-5.

[Gauss95] Gauss, J., “Accurate Calculation of NMR Chemical-Shifts,” Phys. Chem. Chem. Phys., 1995, 99, 1001-08, DOI: 10.1002/bbpc.199500022.

[Gavroglu12] Gavroglu, K.; Simões, A., Neither Chemistry nor Physics: A History of Quantum Chemistry; MIT Press: Cambridge, MA, 2012.

[Gelbart80] Gelbart, W. M.; Elert, M. L.; Heller, D. F., “Photodissociation of the formaldehyde molecule: Does it or doesn’t it?,” Chem. Rev., 1980, 80, 403-16, DOI: 10.1021/cr60327a002.

[George00] George, W. O.; Jones, B. F.; Lewis, R.; Price, J. M., “Ab initio computations on simple carbonyl compounds,” J. Mol. Struct., 2000, 550-551, 281, DOI: 10.1016/S0022-2860(00)00391-4.

[Gerlach22] Gerlach, W.; Stern, O., “Das magnetische Moment des Silberatoms,” Zeitschrift für Physik, 1922, 9, 353-55, DOI: 10.1007/BF01326984.

[Gilbert14] Gilbert, K. E., Pcmodel 10.0, Serena Software, Bloomington, IN, 2014.

[Goerigk11] Goerigk, L.; Grimme, S., “Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals – Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions,” J. Chem. Theory and Comput., 2011, 7, 291-309, DOI: 10.1021/ct100466k.

[Good69] Good, W. D.; Smith, N. K., “Enthalpies of Combustion of Toluene, Benzene, Cyclohexane, Cyclohexene, Methylcyclopentane, 1-Methylcyclopentene, and n-Hexane,” J. Chem. & Eng. Data, 1969, 14, 102-06, DOI: 10.1021/je60040a036.

[Grimme06] Grimme, S., “Semiempirical GGA-type density functional constructed with a long-range dispersion correction,” J. Comp. Chem., 2006, 27, 1787-99, DOI: 10.1002/jcc.20495.

[Grimme06a] Grimme, S., “Semiempirical hybrid density functional with perturbative second-order correlation,” J. Chem. Phys., 2006, 124, 034108, DOI: 10.1063/1.2148954.

[Grirrane08] Grirrane, A.; Resa, I.; Rodríguez, A.; Carmona, E., “Synthesis and Structural Characterization of Dizincocenes Zn25-C5Me5)2 and Zn25-C5Me4Et)2,” Coord. Chem. Rev., 2008, 252, 1532-39, DOI: 10.1016/j.ccr.2008.01.014.

[Gronert06] Gronert, S.; Keefe, J. R., “Primary Semiclassical Kinetic Hydrogen Isotope Effects in Identity Carbon-to-Carbon Proton- and Hydride-Transfer Reactions, an ab Initio and DFT Computational Study,” J. Org. Chem., 2006, 71, 5959-68, DOI: 10.1021/jo0606296.

[Gronert07] Gronert, S.; Keefe, J. R., “The Protenation of Allene and Some Heteroallenes, a Computational Study,” J. Org. Chem., 2007, 72, 6343-52, DOI: 10.1021/jo0704107.

[Gunther96] Günther, H., NMR Spectroscopy: Basic principles, concepts and applications in chemistry; 2nd ed.; John Wiley & Sons, Inc.: Chichester, 1996.

[Guthrie73] Guthrie, J. P., “Hydration of carboxylic acids and esters. Evaluation of the free energy change for addition of water to acetic and formic acids and their methyl esters,” J. Am. Chem. Soc., 1973, 95, 6999-7003, DOI: 10.1021/ja00802a021.

[Guzman12] Guzmán, V.; Roueff, E.; Gauss, J.; Pety, J.; Gratier, P.; Goicoechea, J. R.; Gerin, M.; Teyssier, D., “The hyperfine structure in the rotational spectrum of CF+,” A & A, 2012, 548, A94, DOI: 10.1051/0004-6361/201220174.

[Guzman12a] Guzmán, V.; Pety, J.; Gratier, P.; Goicoechea, J. R.; Gerin, M.; Roueff, E.; Teyssier, D., “The IRAM-30m line survey of the Horsehead PDR. I. CF+ as a tracer of C+ and as a measure of the fluorine abundance,” A & A, 2012, 543, L1, DOI: 10.1051/0004-6361/201219449.

[Haaland03] Haaland, A.; Samdal, S.; Tverdova, N. V.; Girichev, G. V.; Giricheva, N. I.; Shlykov, S. A.; Garkusha, O. G., “The molecular structure of dicyclopentadienylzinc (zincocene) determined by gas electron diffraction and density functional theory calculations: η5, η5, η3, η3 or η5, η1 coordination of the ligand rings?,” J. Organomet. Chem., 2003, 684, 351-58, DOI: 10.1016/S0022-328X(03)00770-8.

[Haeffner99] Hæffner, F.; Hu, C.-H.; Brinck, T.; Norin, T., “The catalytic effect of water in basic hydrolysis of methyl acetate: a theoretical study,” J. Mol. Struct. (Theochem), 1999, 459, 85-93, DOI: 10.1016/S0166-1280(98)00251-6.

[Hall51] Hall, G. G., “The Molecular Orbital Theory of Chemical Valency. VIII. A Method of Calculating Ionization Potentials,” Royal Soc. Proc. A, 1951, 205, 541-52, DOI: 10.1098/rspa.1951.0048

[Haloui10] Haloui, A.; Arfaoui, Y., “A DFT study of the conformational behavior of para-substituted acetophenones in vacuum and in various solvents,” J. Mol. Struct. (Theochem), 2010, 950, 1319, DOI: 10.1016/j.theochem.2010.03.012.

[Handy89] Handy, N. C.; Pople, J. A.; Head-Gordon, M.; Raghavachari, K.; Trucks, G. W., “Size-consistent Brueckner theory limited to double substitutions,” Chem. Phys. Lett., 1989, 164, 185-92, DOI: 10.1016/0009-2614(89)85013-4.

[Hansen99] Hansen, A. E.; Bak, K. L., “Ab initio calculations of electronic circular dichroism,” Enantiomer, 1999, 4, 455-76.

[Harding80] Harding, L. B.; Schlegel, H. B.; Krishnan, R.; Pople, J. A., “Møller-Plesset study of the H4CO potential energy surface,” J. Phys. Chem., 1980, 84, 3394-401, DOI: 10.1021/j100462a017.

[Hariharan73] Hariharan, P. C.; Pople, J. A., “Influence of polarization functions on molecular-orbital hydrogenation energies,” Theoretical Chemistry Accounts, 1973, 28, 213-22, DOI: 10.1007/BF00533485.

[Hartree28] Hartree, D. R., “The wave mechanics of an atom with a non-coulomb central field,” Math. Proc. Camb. Phil. Soc., 1928, 24, 89, DOI: 10.1017/S0305004100011919.

[Hay77] Hay, P. J., “Gaussian basis sets for molecular calculations: Representation of 3d orbitals in transition-metal atoms,” J. Chem. Phys., 1977, 66, 4377-84, DOI: 10.1063/1.433731.

[Hay85] Hay, P. J.; Wadt, W. R., “Ab initio effective core potentials for molecular calculations: Potentials for the transition-metal atoms Sc to Hg,” J. Chem. Phys., 1985, 82, 270-83, DOI: 10.1063/1.448799.

[Hay85a] Hay, P. J.; Wadt, W. R., “Ab initio effective core potentials for molecular calculations: Potentials for K to Au including the outermost core orbitals,” J. Chem. Phys., 1985, 82, 299-310, DOI: 10.1063/1.448975.

[He11] He, Y.; Bo, W.; Dukor, R.; Nafie, L. A., “Determination of Absolute Configuration of Chiral Molecules Using Vibrational Optical Activity: A Review,” Appl. Spectrosc., 2011, 65, 194A-212A, DOI: 10.1366/11-06321.

[Hehre72] Hehre, W. J.; Ditchfield, R.; Pople, J. A., “Self-Consistent Molecular Orbital Methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules,” J. Chem. Phys., 1972, 56, 2257, DOI: 10.1063/1.1677527.

[Heine94] Heine, A.; Herbst-Irmer, R.; Stalke, D.; Kühnle, W.; Zachariasse, K. A., “Structure and crystal packing of 4-aminobenzonitriles and 4-amino-3,5-dimethylbenzonitriles at various temperatures,” Acta Crystallogr. B: Struct. Snc., 1994, 50, 363, DOI: 10.1107/S0108768193008523.

[Helgaker91] Helgaker, T.; Jørgensen, P., “An Electronic Hamiltonian for Origin Independent Calculations of Magnetic-Properties,” J. Chem. Phys., 1991, 95, 2595-601, DOI: 10.1063/1.460912.

[Helgaker94] Helgaker, T.; Ruud, K.; Bak, K. L.; Jørgensen, P.; Olsen, J., “Vibrational Raman Optical-Activity Calculations Using London Atomic Orbitals,” Faraday Discussions, 1994, 99, 165-80, DOI: 10.1039/FD9949900165.

[Helgaker99] Helgaker, T.; Jaszuński, M.; Ruud, K., “Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constants,” Chem. Rev., 1999, 99, 293-352, DOI: 10.1021/cr960017t.

[Hellmann08] Hellmann, R.; Bich, E.; Vogel, E., “Ab initio intermolecular potential energy surface and second pressure virial coefficients of methane,” J. Chem. Phys., 2008, 128, 214303, DOI: 10.1063/1.2932103.

[Hellmann35] Hellmann, H., “A New Approximation Method in the Problem of Many Electrons,” J. Chem. Phys., 1935, 3, 61, DOI: 10.1063/1.1749559.

[Herzberg91] Herzberg, G., Infrared and Raman Spectra of Polyatomic Molecules; Reprint ed.; Krieger Publishing Company: Malabar, FL, 1991; Vol. 2.

[Hirota92] Hirota, E., “Microwave and infrared spectra of free radicals and molecular ions,” Chem. Rev., 1992, 92, 141-73, DOI: 10.1021/cr00009a006.

[Ho82] Ho, P.; Bamford, D. J.; Buss, R. J.; Lee, Y. T.; Moore, C. B., “Photodissociation of Formaldehyde in a Molecular Beam,” J. Chem. Phys., 1982, 76, 3630-36, DOI: 10.1063/1.443400.

[Hod08] Hod, O.; Scuseria, G. E., “Half-metallic zigzag carbon nanotube dots,” ACS Nano, 2008, 2, 2243-49, DOI: 10.1021/nn8004069.

[Hohenberg64] Hohenberg, P.; Kohn, W., “Inhomogeneous Electron Gas,” Phys. Rev., 1964, 136, B864-71, DOI: 10.1103/PhysRev.136.B864

[Holzwarth72] Holzwarth, G.; Chabay, I., “Optical activity of vibrational transitions. Coupled oscillator model,” J. Chem. Phys., 1972, 57, 1632-35, DOI: 10.1063/1.1678447.

[Hopmann11] Hopmann, K. H.; Ruud, K.; Pecul, M.; Kudelski, A.; Dračínský, M.; Bouř, P., “Explicit versus Implicit Solvent Modeling of Raman Optical Activity Spectra,” J. Phys. Chem. B, 2011, 115, 4128-37, DOI: 10.1021/jp110662w.

[Horng95] Horng, M. L.; Gardecki, J. A.; Papazyan, A.; Maroncelli, M., “Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited,” J. Phys. Chem., 1995, 99, 17311, DOI: 10.1021/j100048a004.

[Horowitz78] Horowitz, A.; Calvert, J. G., “The quantum efficiency of the primary processes in formaldehyde photolysis at 3130 Å and 25°C,” Int. J. Chem. Kinet., 1978, 10, 713-32, DOI: 10.1002/kin.550100706.

[Hratchian04] Hratchian, H. P.; Schlegel, H. B., “Reaction path following using a Hessian based predictor-corrector algorithm,” J. Phys. Chem., 2004, 120, 9918-24, DOI: 10.1063/1.1724823.

[Hratchian05a] Hratchian, H. P.; Schlegel, H. B., “Finding minima, transition states, and following reaction pathways on ab initio potential energy surfaces” in Theory and Applications of Computational Chemistry: The First 40 Years; ed. Dykstra, C. E., Frenking, G., Kim, K. S., Scuseria, G., Elsevier: Amsterdam, 2005, pp. 195-249

[Hratchian05b] Hratchian, H. P.; Schlegel, H. B., “Using Hessian updating to increase the efficiency of a Hessian based predictor-corrector reaction path following method,” J. Chem. Theory and Comput., 2005, 1, 61-69, DOI: 10.1021/ct0499783.

[Hratchian12] Hratchian, H. P.; Li, X., “Thirty years of geometry optimization in quantum chemistry and beyond: A tribute to Berny Schlegel,” J. Chem. Theory and Comput., 2012, 8, 4853-55, DOI: 10.1021/ct300950r.

[Hughes00] Hughes, R. A.; Brown, J. M.; Evenson, K. M., “Rotational Spectrum of the AsH2 Radical in Its Ground State, Studied by Far-Infrared Laser Magnetic Resonance ” J. Mol. Spectrosc., 2000, 200, 210-28, DOI: 10.1006/jmsp.1999.8037.

[Hunter98] Hunter, E. P.; Lias, S. G., “Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update,” J. Phys. Chem. Ref. Data, 1998, 27, 413, DOI: 10.1063/1.556018.

[Huron72] Huron, M. J.; Claverie, P., “Calculation of the interaction energy of one molecule with its whole surrounding. I. Method and application to pure nonpolar compounds,” The Journal of Physical Chemistry, 1972, 76, 2123-33, DOI: 10.1021/j100659a011.

[IgelMann88] Igel-Mann, G.; Stoll, H.; Preuss, H., “Pseudopotentials for main group elements (IIIA through VIIA),” Molecular Physics, 1988, 65, 1321-28, DOI: 10.1080/00268978800101811.

[Iikura01] Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K., “Long-range correction scheme for generalized-gradient-approximation exchange functionals,” J. Chem. Phys., 2001, 115, 3540-44, DOI: 10.1063/1.1383587.

[Improta06] Improta, R.; Barone, V.; Scalmani, G.; Frisch, M. J., “A state-specific polarizable continuum model time dependent density functional method for excited state calculations in solution,” J. Chem. Phys., 2006, 125, 054103: 1-9, DOI: 10.1063/1.2222364.

[Improta07] Improta, R.; Scalmani, G.; Frisch, M. J.; Barone, V., “Toward effective and reliable fluorescence energies in solution by a new State Specific Polarizable Continuum Model Time Dependent Density Functional Theory Approach,” J. Chem. Phys., 2007, 127, 074504: 1-9, DOI: 10.1063/1.2757168.

[Ingold53] Ingold, C. K., Structure and mechanism in organic chemistry; Cornell Univ. Press: Ithaca, NY, 1953.

[Isaacs87] Isaacs, N. S., Physical Organic Chemistry; 1st ed.; Longman Scientific and Technical: Essex, UK 1987.

[Ishikawa07] Ishikawa, Y.-i.; Kawakami, K., “Structure and Infrared Spectroscopy of Group 6 Transition-Metal Carbonyls in the Gas Phase: DFT Studies on M(CO)n (M = Cr, Mo, and W; n = 6, 5, 4, and 3),” J. Phys. Chem. A, 2007, 111, 9940-44, DOI: 10.1021/jp071509k.

[Jacquemin07] Jacquemin, D.; Perpète, E. A.; Scalmani, G.; Frisch, M. J.; Kobayashi, R.; Adamo, C., “Assessment of the Efficiency of Long-Range Corrected Functionals for Some Properties of Large Compounds,” J. Chem. Phys., 2007, 126, 144105: 1-12, DOI: 10.1063/1.2715573.

[Jagau12] Jagau, T.-C.; Gauss, J., “Ground and excited state geometries via Mukherjee’s multireference coupled-cluster method,” J. Chem. Phys., 2012, 401, 73, DOI: 10.1016/j.chemphys.2011.10.016.

[Jansen69] Jansen, H. B.; Ros, P., “Non-empirical molecular orbital calculations on the protonation of carbon monoxide,” Chem. Phys. Lett., 1969, 3, 140, DOI: 10.1016/0009-2614(69)80118-1.

[Jensen07] Jensen, F., Introduction to Computational Chemistry; 2nd ed.; Wiley & Sons: West Sussex, England, 2007, pp. 620.

[Jensen69] Jensen, F. R.; Bushweller, C. H., “Separation of Conformers. II. Axial and Equatorial Isomers of Chlorocyclohexane and Trideuteriomethoxycyclohexane,” J. Am. Chem. Soc., 1969, 91, 3223-25, DOI: 10.1021/ja01040a022.

[Johnson04] Johnson, E. R.; Wolkow, R. A.; DiLabio, G. A., “Application of 25 density functionals to dispersion-bound homomolecular dimers,” Chem. Phys. Lett., 2004, 394, 334-38, DOI: 10.1016/j.cplett.2004.07.029.

[Jorgensen62] Jørgensen, C. K., Absorption Spectra and Chemical Bonding in Complexes; Pergamon Press: Oxford, UK, 1962, pp. 352.

[Jorgensen93] Jorgensen, W. L.; Lim, D.; Blake, J. F., “Ab Initio Study of Diels-Alder Reactions of Cyclopentadiene with Ethylene, Isoprene, Cyclopentadiene, Acrylonitrile, and Methyl Vinyl Ketone,” J. Am. Chem. Soc., 1993, 115, 2936-42, DOI: 10.1021/ja00060a048.

[Jost75] Jost, A.; Rees, B.; Yelon, W. B., “Electronic Structure of Chromium Hexacarbonyl at 78 K. 1. Neutron Diffraction Study,” Acta Crystallogr., 1975, B31, 2649-58, DOI: 10.1107/S0567740875008394.

[Kajimoto91] Kajimoto, O.; Yokohama, H.; Ooshima, Y.; Endo, Y., “The structure of 4-(N,N-dimethylamino)benzonitrile and its van der Waals complexes,” Chem. Phys. Lett., 1991, 179, 455, DOI: 10.1016/0009-2614(91)87085-P.

[Kallies01] Kallies, B.; Meier, R., “Electronic Structure of 3d [M(H2O)6]3+ Ions from ScIII to FeIII: A Quantum Mechanical Study Based on DFT Computations and Natural Bond Orbital Analyses,” Inorg. Chem., 2001, 40, 3101, DOI: 10.1021/ic001258t.

[Kang06] Kang, L.; Novick, S. E., “The microwave spectrum of the 1,1-difluoroprop-2-ynyl radical,” J. Chem. Phys., 2006, 125, 054309, DOI: 10.1063/1.2215599.

[Karna91] Karna, S. P.; Dupuis, M., “Frequency-Dependent Nonlinear Optical-Properties of Molecules: Formulation and Implementation in the HONDO Program,” J. Comp. Chem., 1991, 12, 487-504, DOI: 10.1002/jcc.540120409.

[Karton06] Karton, A.; Rabinovich, E.; Martin, J. M. L.; Ruscic, B., “W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions,” J. Chem. Phys., 2006, 125, 144108, DOI: 10.1063/1.2348881.

[Kaupp95] Kaupp, M.; Malkin, V.; Malkina, O.; Salahub, D. R., “Scalar Relativistic Effects on 17O NMR Chemical Shifts in Transition-Metal Oxo Complexes. An ab Initio ECP/DFT Study,” J. Am. Chem. Soc., 1995, 117, 1851-2, DOI: 10.1021/ja00111a032.

[Kaupp95a] Kaupp, M.; Malkin, V.; Malkina, O.; Salahub, D. R., “Erratum: Transition-Metal Oxo Complexes. An ab Initio ECP/DFT Study.,” J. Am. Chem. Soc., 1995, 117, 8492, DOI: 10.1021/ja00137a036.

[Kealy51] Kealy, T. J.; Pauson, P. L., “A New Type of Organo-Iron Compound,” Nature, 1951, 168, 1039, DOI: 10.1038/1681039b0.

[Keegstra96] Keegstra, M. A.; De Feyter, S.; De Schryver, F. C.; Müllen, K., “Hexaterphenylyl- und Hexaquaterphenylylbenzol: das Verhalten von Chromophoren und Elektrophoren auf engem Raum,” Angew. Chem., 1996, 108, 830, DOI: 10.1002/ange.19961080721 (original in German); 10.1002/anie.199607741 (in English).

[Kendall92] Kendall, R. A.; Dunning Jr., T. H.; Harrison, R. J., “Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions,” J. Chem. Phys., 1992, 96, 6796-806, DOI: 10.1063/1.462569.

[Kim12] Kim, D.; Sambasivan, S.; Nam, H.; Kim, K. H.; Kim, J. Y.; Joo, T.; Lee, K.-H.; Kim, K.-T.; Ahn, K. H., “Reaction-based two-photon probes for in vitro analysis and cellular imaging of monoamine oxidase activity,” Chem. Commun., 2012, 48, 6833, DOI: 10.1039/C2CC32424E

[Kirkwood34] Kirkwood, J. G., “Theory of Solutions of Molecules Containing Widely Separated Charges with Special Application to Zwitterions,” J. Chem. Phys., 1934, 2, 351, DOI: 10.1063/1.1749489.

[Klene00] Klene, M.; Robb, M. A.; Frisch, M. J.; Celani, P., “Parallel implementation of the CI-vector evaluation in full CI/CAS-SCF,” J. Chem. Phys., 2000, 113, 5653-65, DOI: 10.1063/1.1290014.

[Klene03] Klene, M.; Robb, M. A.; Blancafort, L.; Frisch, M. J., “A New Efficient Approach to the Direct restricted active space self-consistent field Method,” J. Chem. Phys., 2003, 119, 713-28, DOI: 10.1063/1.1578620

[Knight95] Lon B. Knight, J.; Jones, G. C.; King, G. M.; Babb, R. M.; McKinley, A. J., “Electron spin resonance and theoretical studies of the PO2 and AsO2 radicals in neon matrices at 4 K: Laser vaporization and x-irradiation radical generation techniques,” J. Chem. Phys., 1995, 103, 493, DOI: 10.1063/1.470135.

[Knowles84] Knowles, P. J.; Handy, N., “A new determinant-based full configuration interaction method,” Chem. Phys. Lett., 1984, 111, 315-21, DOI: 10.1016/0009-2614(84)85513-X.

[Kobayashi91] Kobayashi, R.; Handy, N. C.; Amos, R. D.; Trucks, G. W.; Frisch, M. J.; Pople, J. A., “Gradient theory applied to the Brueckner doubles method,” J. Chem. Phys., 1991, 95, 6723-33, DOI: 10.1063/1.461544.

[Kohn65] Kohn, W.; Sham, L. J., “Self-Consistent Equations Including Exchange and Correlation Effects,” Phys. Rev., 1965, 140, A1133-38, DOI: 10.1103/PhysRev.140.A1133

[Kolar07] Kolář, M.; Hobza, P., “Accurate Theoretical Determination of the Structure of Aromatic Complexes Is Complicated: The Phenol Dimer and Phenol∙Methanol Cases,” The Journal of Physical Chemistry, 2007, 111, 5851-54, DOI: 10.1021/jp071486.

[Kondru98] Kondru, R. K.; Wipf, P.; Beratan, D. N., “Theory-assisted determination of absolute stereochemistry for complex natural products via computation of molar rotation angles,” J. Am. Chem. Soc., 1998, 120, 2204-05, DOI: 10.1021/ja973690o.

[Krissinel07] Krissinel, E.; Henrick, K., “Inference of Macromolecular Assemblies from Crystalline State,” J. Mol. Biol., 2007, 372, 774-97, DOI: 10.1016/j.jmb.2007.05.022.

[Krivdin03] Krivdin, L. B.; Kuznetsova, T. A., “Spin-spin coupling constants 13C – 13C in structural studies. Part 34 – Nonempirical calculations: Small heterocycles,” Russ. J. Org. Chem., 2003, 39, 1618-28, DOI: 10.1023/B:RUJO.0000013137.36900.82.

[Krowczynski83] Krówczyński, A.; Kozerski, L., “A General Approach to Aliphatic 2-Nitroenamines,” Synthesis, 1983, 6, 489-91, DOI: 10.1055/s-1983-30397.

[Kwiatkowski92] Kwiatkowski, J. S.; Leszczynski, J., “Ab initio post-Hartree-Fock studies on molecular structure and vibrational IR spectrum of formaldehyde,” Int. J. Quantum Chem., Quantum Chem. Symp., 1992, 44, 421, DOI: 10.1002/qua.560440837.

[Landolt76] Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, Group II; Springer Verlag: Berlin, 1979; Vol. 7.

[Lassettre68] Lassettre, E. N.; Skerbele, A.; Dillon, M. A.; Ross, K. J., “High-Resolution Study of Electron-Impact Spectra at Kinetic Energies between 33 and 100 eV and Scattering Angles to 16°,” J. Chem. Phys., 1968, 48, 5066, DOI: 10.1063/1.1668178.

[Lee84] Lee, Y. S.; Kucharski, S. A.; Bartlett, R. J., “Coupled cluster approach with triple excitations,” J. Chem. Phys., 1984, 81, 5906-12.

[Lee88] Lee, C.; Yang, W.; Parr, R. G., “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B, 1988, 37, 785-89, DOI: 10.1103/PhysRevB.37.785

[Levine13] Levine, I. N., Quantum Chemistry; 7th ed.; Prentice Hall: Englewood Cliffs, NJ, 2013.

[Lewars11] “The Concept of the Potential Energy Surface” in Lewars, E. G., Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, 2nd ed., Kluwer Acad. Pub.: Boston, 2011, pp. 9-41.

[Li05] Li, H.; Robertson, A.; Jensen, J., “Very Fast Empirical Prediction and Interpretation of Protein pKa Values,” Proteins, 2005, 61, 704-21, DOI: 10.1002/prot.20660.

[Li06] Li, X.; Frisch, M. J., “Energy-represented DIIS within a hybrid geometry optimization method,” J. Chem. Theory and Comput., 2006, 2, 835-39, DOI: 10.1021/ct050275a.

[Li08] Li, X.; Josef, P., “Electronic structure of organic diradicals: Evaluation of the performance of coupled-cluster methods,” J. Chem. Phys., 2008, 129, 174101, DOI: 10.1063/1.2999560.

[Lias88] Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G., “Gas-phase Ion and Neutral Thermochemistry,” J. Phys. Chem. Ref. Data, 1988, 17 (S1), 861.

[Limacher09] Limacher, P. A.; Mikkelsen, K. V.; Lüthi, H.-P., “On the accurate calculation of polarizabilities and second hyperpolarizabilities of polyacetylene oligomer chains using the CAM-B3LYP density functional,” J. Chem. Phys., 2009, 130, 194114, DOI: 10.1063/1.3139023.

[Lin09] Lin, W.; Ganguly, A.; Minei, A. J.; Lindeke, G. L.; Pringle, W. C.; Novick, S. E.; Durig, J. R., “Microwave spectra and structural parameters of equatorial-trans cyclobutanol,” J. Mol. Struct., 2009, 922, 83-7, DOI: 10.1016/j.molstruc.2009.01.040.

[Linke67] Linke, S.; Tisue, G. T.; Lwowski, W., “Curtius and Lossen Rearrangements. II. Pivaloyl Azide,” J. Am. Chem. Soc., 1967, 89, 6308, DOI: 10.1021/ja01000a057.

[Lipinski80] Lipiński, J.; Chojnacki, H.; Grabowski, Z. R.; Rotkiewicz, K., “Theoretical model for the double fluorescence of p-cyano-N,N-dimethylaniline in polar solvents,” Chem. Phys. Lett., 1980, 70, 449, DOI: 10.1016/0009-2614(80)80102-3.

[Lipparini11a] Lipparini, F.; Scalmani, G.; Mennucci, B.; Frisch, M. J., “Self-consistent field and polarizable continuum model: A new strategy of solution for the coupled equations,” J. Chem. Theory and Comput., 2011, 7, 610-17, DOI: 10.1021/ct1005906.

[Little89] Little, T. S.; Qiu, J.; Durig, J. R., “Asymmetric torsional potential function and conformational analysis of furfural by far infrared and Raman spectroscopy,” Spectrochim. Acta, Part A, 1989, 45, 789-94, DOI: 10.1016/0584-8539(89)80215-6.

[Liu73] Liu, B.; McLean, A. D., “Accurate calculation of the attractive interaction of two ground state helium atoms,” J. Chem. Phys., 1973, 59, 4557-58, DOI: 10.1063/1.1680654.

[Lohr83] Lohr Jr., L. L.; Hanamura, M.; Morokuma, K., “The 1,2 hydrogen shift as an accompaniment to ring closure and opening: ab initio MO study of thermal rearrangements on the C2H3N potential energy hypersurface,” J. Am. Chem. Soc., 1983, 105, 5541-47, DOI: 10.1021/ja00355a003.

[London37] London, F., “The quantic theory of inter-atomic currents in aromatic combinations,” Journal de Physique et le Radium, 1937, 8, 397-409, DOI: 10.1051/jphysrad:01937008010039700.

[Ludlow05] Ludlow, M. K.; Foresman, J. B., “Computational analysis of zincocene, decamethylzincocene, and decamethyldizincocene,” presented at the 229th National Meeting of the ACS, March 13-17, 2005, San Diego, CA, Session: 910-CHED.

[Mahapatra98] Mahapatra, U. S.; Datta, B.; Mukherjee, D., “A state-specific multi-reference coupled cluster formalism with molecular applications,” Molecular Physics, 1998, 94, 157, DOI: 10.1080/002689798168448.

[Marcelin1915] Marcelin, R., “Physicochemical kinetics,” Ann. Phys, 1915, 3, 120-84.

[Marenich09] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., “Universal Solvation Model based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions,” J. Phys. Chem. B, 2009, 113, 6378-96, DOI: 10.1021/jp810292n.

[Marenich09a] “Minnesota Solvation Database – version 2009,” 2009,

[Maris02] Maris, A.; Melandri, S.; Caminati, W.; Favero, P. G., “The proton donor/acceptor double role of the peptidic group: Free jet rotational spectrum and computational study of lactamide,” Chem. Phys., 2002, 283, 111, DOI: 10.1016/S0301-0104(02)00499-8.

[Martin03] Martin, R. L., “Natural Transition Orbitals,” J. Chem. Phys., 2003, 118, 4775, DOI: 10.1063/1.1558471.

[Martin99] Martin, J. M. L.; de Oliveira, G., “Towards standard methods for benchmark quality ab initio thermochemistry – W1 and W2 theory,” J. Chem. Phys., 1999, 111, 1843-56, DOI: 10.1063/1.479454.

[Matthews76] Matthews, G. P.; Smith, E. B., “An intermolecular pair potential energy function for methane,” Molecular Physics, 1976, 32, 1719-29, DOI: 10.1080/00268977600103031.

[McGrath91] McGrath, M. P.; Radom, L., “Extension of Gaussian-1 (G1) theory to bromine-containing molecules,” J. Chem. Phys., 1991, 94, 511-16, DOI: 10.1063/1.460367.

[McIntyre71] McIntyre, N. S.; Thompson, K. R.; Weltner Jr., W., “Spectroscopy of titanium oxide and titanium dioxide molecules in inert matrices at 4° K,” J. Phys. Chem., 1971, 75, 3243, DOI: 10.1021/j100690a008.

[McLean80] McLean, A. D.; Chandler, G. S., “Contracted Gaussian-basis sets for molecular calculations. 1. 2nd row atoms, Z=11-18,” J. Chem. Phys., 1980, 72, 5639-48, DOI: 10.1063/1.438980

[McNeill77] McNeill, E. A.; Scholer, F. R., “Molecular structure of the gaseous metal carbonyl hydrides of manganese, iron and cobalt,” J. Am. Chem. Soc., 1977, 99, 6243-49, DOI: 10.1021/ja00461a011.

[McWeeny62] McWeeny, R., “Perturbation Theory for Fock-Dirac Density Matrix,” Phys. Rev., 1962, 126, 1028, DOI: 10.1103/PhysRev.126.1028

[McWeeny68] McWeeny, R.; Dierksen, G., “Self-consistent perturbation theory. 2. Extension to open shells,” J. Chem. Phys., 1968, 49, 4852, DOI: 10.1063/1.1669970.

[Mennucci00] Mennucci, B.; Toniolo, A.; Tomasi, J., “Ab Initio Study of the Electronic Excited States in 4-(N,N-Dimethylamino)benzonitrile with Inclusion of Solvent Effects: The Internal Charge Transfer Process,” J. Am. Chem. Soc., 2000, 122, 10621-30, DOI: 10.1021/ja000814f.

[Mennucci02] Mennucci, B.; Tomasi, J.; Cammi, R.; Cheeseman, J. R.; Frisch, M. J.; Devlin, F. J.; Gabriel, S.; Stephens, P. J., “Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules,” J. Phys. Chem. A, 2002, 106, 6102-13, DOI: 10.1021/jp020124t.

[Mennucci11] Mennucci, B.; Cappelli, C.; Cammi, R.; Tomasi, J., “Modeling solvent effects on chiroptical properties,” Chirality, 2011, 23, 717-29, DOI: 10.1002/chir.20984.

[Menshutkin1890] Menshutkin, N., “Beiträgen zur Kenntnis der Affinitätskoeffizienten der Alkylhaloide und der Organischen Amine,” Z. Physik. Chem., 1890, 5, 589-600.

[Menshutkin1890a] Menshutkin, N., “Über die Affinitätskoeffizienten der Alkylhaloide und der Amine,” Z. Physik. Chem., 1890, 6, 41-57.

[Miertus81] Miertuš, S.; Scrocco, E.; Tomasi, J., “Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of ab initio Molecular Potentials for the Prevision of Solvent Effects,” Chem. Phys., 1981, 55, 117-29, DOI: 10.1016/0301-0104(81)85090-2.

[Miller52] Miller, S. A.; Tebboth, J. A.; Tremaine, J. F., “Dicyclopentadienyliron,” J. Chem. Soc. (Resumed), 1952, 0, 632-35, DOI: 10.1039/JR9520000632

[Miller77] Miller, C. K.; Ward, J. F., “Measurements of nonlinear optical polarizabilities for some halogenated methanes: The role of bond-bond interactions,” Phys. Rev. A, 1977, 16, 1179, DOI: 10.1103/PhysRevA.16.1179

[Miller80] Miller, W. H.; Handy, N. C.; Adams, J. E., “Reaction-path Hamiltonian for polyatomic-molecules,” J. Chem. Phys., 1980, 72, 99-112, DOI: 10.1063/1.438959.

[Miller90] Miller, W. H.; Hernandez, R.; Handy, N. C.; Jayatilaka, D.; Willets, A., “Ab initio calculation of anharmonic constants for a transition-state, with application to semiclassical transition-state tunneling probabilities,” Chem. Phys. Lett., 1990, 172, 62-68, DOI: 10.1016/0009-2614(90)87217-F.

[Mills30] Mills, W. H.; Nixon, I. G., “CCCXXXII — Stereochemical influences on aromatic substitution. Substitution derivatives of 5-hydroxyhydrindene,” J. Chem. Soc., 1930, 0, 2510, DOI: 10.1039/JR9300002510

[Moller34] Møller, C.; Plesset, M. S., “Note on an approximation treatment for many-electron systems,” Phys. Rev., 1934, 46, 0618-22, DOI: 10.1103/PhysRev.46.618

[Montgomery00] Montgomery Jr., J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A., “A complete basis set model chemistry. VII. Use of the minimum population localization method,” J. Chem. Phys., 2000, 112, 6532-42, DOI: 10.1063/1.481224.

[Montgomery99] Montgomery Jr., J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A., “A complete basis set model chemistry. VI. Use of density functional geometries and frequencies,” J. Chem. Phys., 1999, 110, 2822-27, DOI: 10.1063/1.477924.

[Moretti13] Moretti, V., Spectral Theory and Quantum Mechanics; Springer-Verlag: Milan, 2013, pp. 735.

[Mulliken55] Mulliken, R. S., “Electronic Population Analysis on LCAO-MO Molecular Wave Functions I,” The Journal of Chemical Physics, 1955, 23, 1833-40, DOI: 10.1063/1.1740588.

[Nafie11] Nafie, L. A., Vibrational Optical Activity: Principles and Applications; John Wiley & Sons, Ltd., 2011.

[Nafie83] Nafie, L. A., “Adiabatic molecular properties beyond the Born-Oppenheimer approximation: Complete adiabatic wave functions and vibrationally induced electronic current density,” J. Chem. Phys., 1983, 79, 4950-57, DOI: 10.1063/1.445588.

[Nafie83a] Nafie, L. A.; Freedman, T. B., “Vibronic coupling theory of infrared vibrational transitions,” J. Chem. Phys., 1983, 78, 7108-16, DOI: 10.1063/1.444741.

[Nafie92] Nafie, L. A., “Velocity-gauge formalism in the theory of vibrational circular dichroism and infrared absorption,” J. Chem. Phys., 1992, 96, 5687-702, DOI: 10.1063/1.462668.

[Nafie94] Nafie, L. A.; Che, D., “Theory and Measurement of Raman Optical Activity” in Modern Nonlinear Optics, Part 3; ed. Evans, M., Kielich, S., Advances in Chemical Physics, vol. 85, Wiley: New York, 1994, pp. 105-49

[Nakashima80] Nakashima, N.; Sumitani, M.; Ohmine, I.; Yoshihara, K., “Nanosecond laser photolysis of the benzene monomer and eximer,” J. Chem. Phys., 1980, 72, 2226, DOI: 10.1063/1.439465.

[Nakashima80a] Nakashima, N.; Inoue, H.; Sumitani, M.; Yoshihara, K., “Laser flash photolysis of benzene. III. Sn <-- S1 absorption of gaseous benzene,” J. Chem. Phys., 1980, 73, 5976, DOI: 10.1063/1.440131.

[Nakatsuji78] Nakatsuji, H.; Hirao, K., “Cluster expansion of the wavefunction: Symmetry-adapted-cluster expansion, its variational determination, and extension of open-shell orbital theory,” J. Chem. Phys., 1978, 68, 2053-65, DOI: 10.1063/1.436028.

[Nakatsuji79] Nakatsuji, H., “Cluster expansion of the wavefunction: Calculation of electron correlations in ground and excited states by SAC and SAC-CI theories,” Chem. Phys. Lett., 1979, 67, 334-42, DOI: 10.1016/0009-2614(79)85173-8.

[Nakatsuji79a] Nakatsuji, H., “Cluster expansion of the wavefunction: Electron correlations in ground and excited states by SAC (Symmetry-Adapted-Cluster) and SAC-CI theories,” Chem. Phys. Lett., 1979, 67, 329-33, DOI: 10.1016/0009-2614(79)85172-6.

[Nakatsuji97] Nakatsuji, H., “SAC-CI Method: Theoretical aspects and some recent topics” in Computational Chemistry: Reviews of Current Trends; ed. Leszczynski, J., vol. 2, World Scientific: Singapore, 1997, pp. 62-124, DOI: 10.1142/9789812812148_0002.

[Nash68] Nash, L. K., Elements of Statistical Thermodynamics; Addison-Wesley: Reading, MA, 1968.

[NBO3.1] Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F., NBO Version 3.1 Theoretical Chemistry Institute, Univ. WI, Madison, c.1988.

[NietoOrtega11] Nieto-Ortega, B.; Casado, J.; Blanch, E. W.; López Navarrete, J. T.; Quesada, A. R.; Ramírez, F. J., “Raman Optical Activity Spectra and Conformational Elucidation of Chiral Drugs. The Case of the Antiangiogenic Aeroplysinin-1,” J. Phys. Chem. A, 2011, 115, 2752-55, DOI: 10.1021/jp2009397.

[NIST08] NIST Chemistry WebBook; Linstrom, P. J.; Mallard, W. G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, 2008.

[Nobes87] Nobes, R. H.; Pople, J. A.; Radom, L.; Handy, N. C.; Knowles, P. J., “Slow Convergence of the Møller-Plesset Perturbation Series: The Dissociation-Energy of Hydrogen Cyanide and the Electron-Affinity of the Cyano Radical,” Chem. Phys. Lett., 1987, 138, 481-85, DOI: 10.1016/0009-2614(87)80545-6.

[Noonan05] Noonan, K. Y.; Beshire, M.; Darnell, J.; Frederick, K. A., “Qualitative and Quantitative Analysis of Illicit Drug Mixtures on Paper Currency Using Raman Microspectroscopy,” Appl. Spectrosc., 2005, 59, 1493, DOI: 10.1366/000370205775142610.

[Nyden81] Nyden, M. R.; Petersson, G. A., “Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions,” J. Chem. Phys., 1981, 75, 1843-62, DOI: 10.1063/1.442208.

[OBoyle11] O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R., “Open Babel: An open chemical toolbox,” J. Cheminform., 2011, 3, 7 Oct. 2011, DOI: 10.1186/1758-2946-3-33.

[Ochterski00] Ochterski, J. W., “Thermochemistry in Gaussian,” 2000.

[Ochterski93] Ochterski, J. W., Complete Basis Set Model Chemistries [PhD Thesis], Wesleyan University (Middletown, CT), 1993.

[Ochterski95] Ochterski, J. W.; Petersson, G. A.; Wiberg, K. B., “A Comparison of Model Chemistries,” J. Am. Chem. Soc., 1995, 117, 11299-308, DOI: 10.1021/ja00150a030.

[Ochterski96] Ochterski, J. W.; Petersson, G. A.; Montgomery Jr., J. A., “A complete basis set model chemistry. V. Extensions to six or more heavy atoms,” J. Chem. Phys., 1996, 104, 2598-619, DOI: 10.1063/1.470985.

[Odell70] O’Dell Jr., M. S.; Darwent, B. d. B., “Thermal decomposition of methyl azide,” Can. J. Chem., 1970, 48, 1140, DOI: 10.1139/v70-187.

[Okamoto67] Okamoto, K.; Fukui, S.; Shingu, H., “Kinetic Studies of Bimolecular Nucleophilic Substitution. 6. Rates of Menschtkin Reaction of Methyl Iodide with Methylamines and Ammonia in Aqueous Solutions,” Bull. Chem. Soc. Jpn., 1967, 40, 1920, DOI: 10.1246/bcsj.40.1920.

[Olivucci93] Olivucci, M.; Ragazos, I. N.; Bernardi, F.; Robb, M. A., “Conical intersection mechanism for the photochemistry of butadiene: an MC-SCF study,” J. Am. Chem. Soc., 1993, 115, 3710-21, DOI: 10.1021/ja00062a042.

[Olsen85] Olsen, J.; Jørgensen, P., “Linear and Nonlinear Response Functions for an Exact State and for an MCSCF State,” J. Chem. Phys., 1985, 82, 3235-64, DOI: 10.1063/1.448223.

[Olsen88] Olsen, J.; Roos, B. O.; Jørgensen, P.; Jensen, H. J. A., “Determinant Based Configuration-Interaction Algorithms for Complete and Restricted Configuration-Interaction Spaces,” J. Chem. Phys., 1988, 89, 2185-92, DOI: 10.1063/1.455063.

[Olsen95] Olsen, J.; Bak, K. L.; Ruud, K.; Helgaker, T.; Jørgensen, P., “Orbital Connections for Perturbation-Dependent Basis-Sets,” Theoretical Chemistry Accounts, 1995, 90, 421-39, DOI: 10.1007/BF01113545.

[Olsson11] Olsson, M. H. M.; Søndergaard, C. R.; Rostkowski, M.; Jensen, J. H., “PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa predictions,” J. Chem. Theory and Comput., 2011, 7, 525-37, DOI: 10.1021/ct100578z.

[Onsager36] Onsager, L., “Electric Moments of Molecules in Liquids,” J. Am. Chem. Soc., 1936, 58, 1486-93, DOI: 10.1021/ja01299a050.

[Ophardt84] Ophardt, C. E., “Synthesis and spectra of vanadium complexes,” J. Chem. Educ., 1984, 61, 1102, DOI: 10.1021/ed061p1102.

[ORegan91] O’Regan, B.; Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 1991, 353, 737-40, DOI: 10.1038/353737a0.

[Orendt85] Orendt, A. M.; Facelli, J. C.; Grant, D. M.; Michl, J.; Walker, F. H.; Dailey, W. P.; Waddell, S. T.; Wiberg, K. B.; Schindler, M.; Kutzelnigg, W., “Low temperature 13C NMR magnetic resonance in solids. 4. Cyclopropane, bicyclo[1.1.0]butane, and [1.1.1]propellane,” Theor. Chim. Acta, 1985, 68, 421, DOI: 10.1007/BF00527667.

[Oyler96] Oyler, J.; Darwin, W. D.; Cone, E. J., “Cocaine Contamination of United States Paper Currency,” J. Anal. Toxicol., 1996, 20, 213-16, DOI: 10.1093/jat/20.4.213.

[Page88] Page, M.; McIver Jr., J. W., “On evaluating the reaction path Hamiltonian,” J. Chem. Phys., 1988, 88, 922-35, DOI: 10.1063/1.454172.

[Page90] Page, M.; Doubleday Jr., C.; McIver Jr., J. W., “Following steepest descent reaction paths: the use of higher energy derivatives with ab initio electronic-structure methods,” J. Chem. Phys., 1990, 93, 5634-42, DOI: 10.1063/1.459634.

[Palafox89] Palafox, M. A., “Raman spectra and vibrational analysis for benzocaine,” J. Raman Spectrosc., 1989, 20, 765-71, DOI: 10.1002/jrs.1250201203.

[Palafox93] Palafox, M. A., “Infrared and Raman Study of Benzocaine Hydrochloride,” Spectroscopy Lett., 1993, 26, 1395-415, DOI: 10.1080/00387019308011618

[Palmer93] Palmer, I. J.; Ragazos, I. N.; Bernardi, F.; Olivucci, M.; Robb, M. A., “An MC-SCF study of the S1 and S2 photochemical reactions of benzene,” J. Am. Chem. Soc., 1993, 115, 673-82, DOI: 10.1021/ja00055a042.

[Papousek82] Papoušek, D.; Aliev, M. R., Molecular Vibrational-Rotational Spectra, Studies in Physical and Theoretical Chemistry, vol. 17, ed. Durig, J. R., Elsevier: New York, 1982

[Pappalardo93] Pappalardo, R. R.; Marcos, E. S.; Ruiz-López, M. F.; Rinaldi, D.; Rivail, J.-L., “Solvent effects on molecular geometries and isomerization processes: A study of push-pull ethylenes in solution,” J. Am. Chem. Soc., 1993, 115, 3722-30, DOI: 10.1021/ja00062a043.

[Parmenter63] Parmenter, C. S.; Noyes, W. A., “Energy Dissipation from Excited Acetaldehyde Molecules,” J. Am. Chem. Soc., 1963, 85, 416, DOI: 10.1021/ja00887a010.

[Parr89] Parr, R. G.; Yang, W., Density-functional theory of atoms and molecules; Oxford Univ. Press: Oxford, 1989, pp. 352.

[Parthiban01] Parthiban, S.; Martin, J. M. L., “Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities,” J. Chem. Phys., 2001, 114, 6014-29, DOI: 10.1063/1.1356014.

[Parusel98] Parusel, A. B. J.; Köhler, G.; Grimme, S., “Density Functional Study of Excited Charge Transfer State Formation in 4-(N,N-Dimethylamino)benzonitrile,” J. Phys. Chem. A, 1998, 102, 6297, DOI: 10.1021/jp9800867.

[Paulisse00] Paulisse, K. W.; Friday, T. O.; Graske, M. L.; Polik, W. F., “Vibronic spectroscopy and lifetime of S1 acrolein,” J. Chem. Phys., 2000, 113, 184, DOI: 10.1063/1.481785.

[Pecul06] Pecul, M.; Lamparska, E.; Cappelli, C.; Frediani, L.; Ruud, K., “Solvent Effects on Raman Optical Activity Spectra Calculated Using the Polarizable Continuum Model,” J. Phys. Chem. A, 2006, 110, 2807-15, DOI: 10.1021/jp056443c.

[Pedersen95] Pedersen, T. B.; Hansen, A. E., “Ab initio calculation and display of the rotatory strength tensor in the random phase approximation. Method and model studies,” Chem. Phys. Lett., 1995, 246, 1-8, DOI: 10.1016/0009-2614(95)01036-9.

[Pedley94] Pedley, J. B., Thermochemical Data and Structures of Organic Compounds; CRC Press: TX, 1994; Vol. 1.

[Pell65] Pell, A. S.; Pilcher, G., “Measurements of Heats of Combustion by Flame Calorimetry. 3. Ethylene Oxide, Trimethylene Oxide, Tetrahydrofuran and Tetrahydropy,” Trans. Faraday Soc., 1965, 61, 71-77, DOI: 10.1039/TF9656100071

[Peng10] Peng, B.; Yang, S.; Li, L.; Cheng, F.; Chen, J., “A density functional theory and time-dependent density functional theory investigation on the anchor comparison of triarylamine-based dyes,” J. Chem. Phys., 2010, 132, 034305, DOI: 10.1063/1.3292639.

[Peng93] Peng, C.; Schlegel, H. B., “Combining Synchronous Transit and Quasi-Newton Methods for Finding Transition States,” Israel J. Chem., 1993, 33, 449-54, DOI: 10.1002/ijch.199300051.

[Peng96] Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J., “Using redundant internal coordinates to optimize equilibrium geometries and transition states,” J. Comp. Chem., 1996, 17, 49-56, Chem. Phys. Lett., 2003, 375, 452-58, DOI: 10.1016/S0009-2614(03)00886-8.

[Perdew91] Perdew, J. P., “Unified Theory of Exchange and Correlation Beyond the Local Density Approximation” in Electronic Structure of Solids ‘91. Proceedings of the 75th WE-Heraeus-Seminar and 21st Annual International Symposium on Electronic Structure of Solids held in Gaussig (Germany); ed. Ziesche, P., Eschrig, H., Akademie Verlag: Berlin, 1991, pp. 11-20

[Perdew92] Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B, 1992, 46, 6671-87, DOI: 10.1103/PhysRevB.46.6671.

[Perdew92a] Perdew, J. P.; Wang, Y., “Accurate and Simple Analytic Representation of the Electron Gas Correlation Energy,” Phys. Rev. B, 1992, 45, 13244-49, DOI: 10.1103/PhysRevB.45.13244

[Perdew93a] Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., “Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Phys. Rev. B, 1993, 48, 4978, DOI: 10.1103/PhysRevB.48.4978.2.

[Petersson00] Petersson, G. A.; Frisch, M. J., “A journey from generalized valence bond theory to the full CI complete basis set limit,” J. Phys. Chem. A, 2000, 104, 2183-90, DOI: 10.1021/jp991947u.

[Petersson81] Petersson, G. A.; Nyden, M. R., “Interference effects in pair correlation energies: Helium L-limit energies,” J. Chem. Phys., 1981, 75, 3423-25, DOI: 10.1063/1.442450.

[Petersson85] Petersson, G. A.; Yee, A. K.; Bennett, A., “Complete basis set correlation energies. III. The total correlation energy of the neon atom,” J. Chem. Phys., 1985, 83, 5105-28, DOI: 10.1063/1.449724.

[Petersson88] Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J., “A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements,” J. Chem. Phys., 1988, 89, 2193-218, DOI: 10.1063/1.455064.

[Petersson91] Petersson, G. A.; Al-Laham, M. A., “A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms,” J. Chem. Phys., 1991, 94, 6081-90, DOI: 10.1063/1.460447.

[Pettersen04] Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E., “UCSF Chimera: a visualization system for exploratory research and analysis,” J. Comp. Chem., 2004, 25, 1605-12, DOI: 10.1002/jcc.20084.

[Phillips59] Phillips, J. C.; Kleinman, L., “New Method for Calculating Wave Functions in Crystals and Molecules,” Phys. Rev., 1959, 116, 287-94, DOI: 10.1103/PhysRev.116.287.

[Pickett91] Pickett, H. M., “The Fitting and Prediction of Vibration-Rotation Spectra with Spin Interactions,” J. Mol. Spectrosc., 1991, 148, 371-77, DOI: 10.1016/0022-2852(91)90393-O.

[Pisarenko03] Pisarenko, A.; Foresman, J. B.; Clarke, D. D., “Toward more accurate computational methods to predict C-13 chemical shifts: A study of 2,2,4-trimethylpentane-1,3-diol,” 2003, unpublished.

[Pittam72] Pittam, D. A.; Pilcher, G., “Measurements of Heats of Combustion by Flame Calorimetry. 8. Methane, ethane, propane, n-butane and 2-methylpropane,” J. Chem. Soc., Faraday Trans. 1, 1972, 68, 2224-29, DOI: 10.1039/F19726802224

[Plass98] Plass, R.; Egan, K.; Collazo-Davila, C.; Grozea, D.; Landree, E.; Marks, L. D.; Gajdardziska-Josifovska, M., “Cyclic Ozone Identified in Magnesium Oxide (111) Surface Reconstructions,” Phys. Rev. Lett., 1998, 81, 4891-94, DOI: 10.1103/PhysRevLett.81.4891.

[Polavarapu99] Polavarapu, P. L.; Zhao, C.; Cholli, A. L.; Vernice, G. G., “Vibrational Circular Dichroism, Absolute Configuration, and Predominant Conformations of Volatile Anesthetics: Desflurane,” J. Phys. Chem. B, 1999, 103, 6127-32, DOI: 10.1021/jp990550n.

[Pople54] Pople, J. A.; Nesbet, R. K., “Self-Consistent Orbitals for Radicals,” J. Chem. Phys., 1954, 22, 571-72, DOI: 10.1063/1.1740120.

[Pople73] Pople, J. A., “Theoretical Models for Chemistry” in Energy, Structure, and Reactivity: Proceedings of the 1972 Boulder Summer Research Conference on Theoretical Chemistry; ed. Smith, D. W., Wiley & Sons: New York, 1973, pp. 399

[Pople76] Pople, J. A.; Binkley, J. S.; Seeger, R., “Theoretical Models Incorporating Electron Correlation,” Int. J. Quantum Chem., 1976, 10, 1-19, DOI: 10.1002/qua.560100802.

[Pople77] Pople, J. A.; Seeger, R.; Krishnan, R., “Variational Configuration Interaction Methods and Comparison with Perturbation Theory,” Int. J. Quantum Chem., 1977, 12, 149-63, DOI: 10.1002/qua.560120820.

[Pople89] Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A., “Gaussian-1 theory: A general procedure for prediction of molecular energies,” J. Chem. Phys., 1989, 90, 5622-29, DOI: 10.1063/1.456415.

[Pople93] Pople, J. A.; Scott, A. P.; Wong, M. W.; Radom, L., “Scaling Factors for Obtaining Fundamental Vibrational Frequencies and Zero-Point Energies from HF/6-31G* and MP2/6-31G* Harmonic Frequencies,” Israel J. Chem., 1993, 33, 345-50, DOI: 10.1002/ijch.199300041.

[Porezag00] Porezag, D.; Pederson, M. R.; Liu, A. Y., “The Accuracy of the Pseudopotential Approximation with Density-Functional Theory,” Phys. Status Solidi B, 2000, 217, 219-30, J. Phys. Chem., 1994, 98, 1180-84, DOI: 10.1021/j100055a023.

[Prochnow09] Prochnow, E.; Evangelista, F. A.; Schaefer III, H. F.; Allen, W. D.; Gauss, J., “Analytic gradients for the state-specific multireference coupled cluster singles and doubles model,” J. Chem. Phys., 2009, 131, 064109, DOI: 10.1063/1.3204017.

[Pulay69] Pulay, P., “Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules. I. Theory,” Molecular Physics, 1969, 17, 197-204.

[Pulay79] Pulay, P.; Fogarasi, G.; Pang, F.; Boggs, J. E., “Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole-moment derivatives,” J. Am. Chem. Soc., 1979, 101, 2550-60, DOI: 10.1021/ja00504a009.

[Pulay92] Pulay, P.; Fogarasi, G., “Geometry optimization in redundant internal coordinates,” J. Chem. Phys., 1992, 96, 2856-60, DOI: 10.1063/1.462844.

[Purvis82] Purvis III, G. D.; J., B. R., “A full coupled-cluster singles and doubles model: the inclusion of disconnected triples,” J. Chem. Phys., 1982, 76, 1910-18, DOI: 10.1063/1.443164.

[Qiu10] Qiu, S.; Li, G.; Liu, P.; Wang, C.; Feng, Z.; Li, C., “Chirality transition in the epoxidation of (-)-α-pinene and successive hydrolysis studied by Raman optical activity and DFT,” Phys. Chem. Chem. Phys., 2010, 12, 3005-13, DOI: 10.1039/B919993D

[Quapp87] Quapp, W., “A redefined anharmonic potential energy surface of HCN,” J. Mol. Spectrosc., 1987, 125, 122, DOI: 10.1016/0022-2852(87)90198-6.

[Raghavachari78] Raghavachari, K.; Pople, J. A., “Approximate 4th-order perturbation-theory of electron correlation energy,” Int. J. Quantum Chem., 1978, 14, 91-100, DOI: 10.1002/qua.560140109.

[Raghavachari80] Raghavachari, K.; Frisch, M. J.; Pople, J. A., “Contribution of triple substitutions to the electron correlation energy in fourth-order perturbation theory,” J. Chem. Phys., 1980, 72, 4244-45, DOI: 10.1063/1.439657.

[Raghavachari80a] Raghavachari, K.; Schlegel, H. B.; Pople, J. A., “Derivative studies in configuration-interaction theory,” J. Chem. Phys., 1980, 72, 4654-55, DOI: 10.1063/1.439708.

[Raghavachari80b] Raghavachari, K.; Binkley, J. S.; Seeger, R.; Pople, J. A., “Self-Consistent Molecular Orbital Methods. 20. Basis set for correlated wave-functions,” J. Chem. Phys., 1980, 72, 650-54, DOI: 10.1063/1.438955.

[Raghavachari88] Raghavachari, K., “Sequential Clustering Reactions of Si+ with Silane: A Theoretical Study of the Reaction Mechanisms,” J. Chem. Phys., 1988, 88, 1688-702, DOI: 10.1063/1.454147.

[Raghavachari89] Raghavachari, K.; Trucks, G. W., “Highly correlated systems: Excitation energies of first row transition metals Sc-Cu,” J. Chem. Phys., 1989, 91, 1062-65, DOI: 10.1063/1.457230.

[Raghavachari90] Raghavachari, K.; Pople, J. A.; Replogle, E. S.; Head-Gordon, M., “Fifth Order Møller-Plesset Perturbation Theory: Comparison of Existing Correlation Methods and Implementation of New Methods Correct to Fifth Order,” J. Phys. Chem., 1990, 94, 5579-86, DOI: 10.1021/j100377a033.

[Raghavachari92] Raghavachari, K., “Ground state of C84: Two almost isoenergetic isomers,” Chem. Phys. Lett., 1992, 190, 397-400, DOI: 10.1016/0009-2614(92)85162-4.

[Rappe92] Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; III, W. A. G.; Skiff, W. M., “UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations,” J. Am. Chem. Soc., 1992, 114, 10024-35, DOI: 10.1021/ja00051a040.

[Reed85] Reed, A. E.; Weinstock, R. B.; Weinhold, F., “Natural-population analysis,” J. Chem. Phys., 1985, 83, 735-46, DOI: 10.1063/1.449486.

[Reed85a] Reed, A. E.; Weinhold, F., “Natural Localized Molecular Orbitals,” J. Chem. Phys., 1985, 83, 1736-40, DOI: 10.1063/1.449360.

[Resa04] Resa, I.; Carmona, E.; Gutierrez-Puebla, E.; Monge, A., “Decamethyldizincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond,” Science, 2004, 305, 1136-38, DOI: 10.1126/science.1101356

[Rettig99] Rettig, W.; Bliss, B.; Dirnberger, K., “Pseudo-Jahn-Teller and TICT-models: a photophysical comparison of meta- and para-DMABN derivatives,” Chem. Phys. Lett., 1999, 305, 8-14, DOI: 10.1016/S0009-2614(99)00316-4.

[Reusch13] Reusch, W. H., “Aromatic Substitution Reactions,” 2013,

[Rhile06] Rhile, I. J.; Markle, T. F.; Nagao, H.; DiPasquale, A. G.; Lam, O. P.; Lockwood, M. A.; Rotter, K.; Mayer, J. M., “Concerted Proton-Electron Transfer in the Oxidation of Hydrogen-Bonded Phenols,” J. Am. Chem. Soc., 2006, 128, 6075, DOI: 10.1021/ja054167+.

[Rhinehart12] Rhinehardt, J. M.; Challa, J. R.; McCamant, D. W., “Multimode Charge-Transfer Dynamics of 4-(Dimethylamino)benzonitrile Probed with Ultraviolet Femtosecond Stimulated Raman Spectroscopy,” J. Phys. Chem. B, 2012, 116, 10522-34, DOI: 10.1021/jp3020645.

[Ribeiro11] Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., “Use of Solution-Phase Vibrational Frequencies in Continuum Models for the Free Energy of Solvation,” J. Phys. Chem. B, 2011, 115, 14556, DOI: 10.1021/jp205508z.

[Rice90] Rice, J. E.; Amos, R. D.; Colwell, S. M.; Handy, N. C.; Sanz, J., “Frequency-Dependent Hyperpolarizabilities with Application to Formaldehyde and Methyl-Fluoride,” J. Chem. Phys., 1990, 93, 8828-39, DOI: 10.1063/1.459221.

[Rice91] Rice, J. E.; Handy, N. C., “The Calculation of Frequency-Dependent Polarizabilities as Pseudo-Energy Derivatives,” J. Chem. Phys., 1991, 94, 4959-71, DOI: 10.1063/1.460558.

[Rice92] Rice, J. E.; Handy, N. C., “The Calculation of Frequency-Dependent Hyperpolarizabilities Including Electron Correlation-Effects,” Int. J. Quantum Chem., 1992, 43, 91-118, DOI: 10.1002/qua.560430110.

[Richardson00] Richardson, A. D.; Hedberg, K.; Lucier, G. M., “Gas-Phase Molecular Structures of Third Row Transition-Metal Hexafluorides WF6, ReF6, OsF6, IrF6, and PtF6. An Electron-Diffraction and ab Initio Study,” Inorg. Chem., 2000, 39, 2787-93, DOI: 10.1021/ic000003c.

[Rinaldi73] Rinaldi, D.; Rivail, J.-L., “Polarisabilites moléculaires et effet diélectrique de milieu à l‘état liquide,” Theoretica chimica acta, 1973, 32, 57-70, DOI: 10.1007/BF00527479.

[Robb14] Robb, M. A., “In This Molecule There Must be a Conical Intersection” in Advances in Physical Organic Chemistry, vol. 48, ed. Williams, I. H., Williams, N. H., Elsevier: 2014, pp. 189-228, DOI: 10.1016/B978-0-12-800256-8.00003-5.

[Robb90] Robb, M. A.; Niazi, U., “The Unitary Group Approach to Electronic Structure Computations” in Reports in Molecular Theory; ed. Weinstein, H., Náray-Szabó, G., vol. 1, CRC Press: 1990, pp. 23-55

[Roos80] Roos, B. O.; Taylor, P. R.; Siegbahn, P. E. M., “A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach,” Chem. Phys., 1980, 48, 157-73, DOI: 10.1016/0301-0104(80)80045-0.

[Roothaan51] Roothaan, C. C. J., “New Developments in Molecular Orbital Theory,” Rev. Mod. Phys., 1951, 23, 69, DOI: 10.1103/RevModPhys.23.69

[Rosenau02] Rosenau, T.; Potthast, A.; Elder, T.; Kosma, P., “Stabilization and First Direct Spectroscopic Evidence of the o-Quinone Methide Derived from Vitamin E,” Org. Lett., 2002, 4, 4285, DOI: 10.1021/ol026917f.

[Rosenau04] Rosenau, T.; Ebner, G.; Stanger, A.; Perl, S.; Nuri, L., “From a Theoretical Concept to Biochemical Reactions: Strain-Induced Bond Localization (SIBL) in Oxidation of Vitamin E,” Chem. – Eur. J., 2004, 11, 280-87, DOI: 10.1002/chem.200400265.

[Rosenau07] Rosenau, T.; Kloser, E.; Gille, L.; Mazzani, F.; Netscher, T., “Vitamin E Chemistry. Studies into Initial Oxidation Intermediates of α-Tocopherol: Disproving the Involvement of 5a-C-Centered ‘Chromanol Methide’ Radicals,” J. Org. Chem., 2007, 72, 3268-81, DOI: 10.1021/jo062553j.

[Rosenfeld28] Rosenfeld, L., “Quantum-mechanical theory of the natural optical activity of liquids and gases,” Zeitschrift fuer Physik, 1928, 52, 161-74.

[Roux08] Roux, M. V.; Temprado, M.; Chickos, J. S.; Nagano, Y., “Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,” J. Phys. Chem. Ref. Data, 2008, 37, 1855-996, DOI: 10.1063/1.2955570.

[Runge84] Runge, E.; Gross, E. K. U., “Density-functional theory for time-dependent systems,” Phys. Rev. Lett., 1984, 52, 997-1000, DOI: 10.1103/PhysRevLett.52.997.

[Rusakov13] Rusakov, A. A.; Krivdin, L. B., “Modern quantum chemical methods for calculating spin-spin coupling constants: Theoretical basis and structural applications in chemistry,” Russ. Chem. Rev., 2013, 82, 99-130, DOI: 10.1070/RC2013v082n02ABEH004350.

[Ruud02] Ruud, K.; Helgaker, T., “Optical rotation studied by density-functional and coupled-cluster methods,” Chem. Phys. Lett., 2002, 352, 533-39, DOI: 10.1016/S0009-2614(01)01492-0.

[Ruud02a] Ruud, K.; Helgaker, T.; Bouř, P., “Gauge-origin independent density-functional theory calculations of vibrational Raman optical activity,” J. Phys. Chem. A, 2002, 106, 7448-55, DOI: 10.1021/jp026037i.

[Sadlej88] Sadlej, A. J., “Medium-sized polarized basis sets for high-level correlated calculations of molecular electric properties,” Collect. Czech. Chem. Commun., 1988, 53, DOI: 10.1135/cccc19881995

[Saito12] Saito, T.; Thiel, W., “Analytical Gradients for Density Functional Calculations with Approximate Spin Projection,” J. Phys. Chem. A, 2012, 116, 10864-69, DOI: 10.1021/jp308916s.

[Sala14] Sala, M.; Kirkby, O. M.; Guérin, S.; Fielding, H. H., “New insight into the potential energy landscape and relaxation pathways of photoexcited aniline from CASSCF and XMCQDPT2 electronic structure calculations,” Phys. Chem. Chem. Phys., 2014, 16, 3122-33, DOI: 10.1039/c3cp54418d.

[Salahub89] The Challenge of d and f Electrons; Salahub, D. R.; Zerner, M. C., Eds.; ACS: Washington, D.C., 1989; Vol. 394.

[Salter98] Salter, C.; Foresman, J. B., “Naphthalene and azulene. I. Semimicro bomb calorimetry and quantum mechanical calculations,” J. Chem. Educ., 1998, 75, 1341-45, DOI: 10.1021/ed075p1341.

[Santolinia15] Santolinia, V.; Malhadoa, J. P.; Robb, M. A.; Garavelli, M.; Bearpark, M. J., “Photochemical reaction paths of cis-dienes studied with RASSCF: the changing balance between ionic and covalent excited states,” Molecular Physics, submitted (2015), 113, DOI: 10.1080/00268976.2015.1025880.

[Santoro07] Santoro, F.; Improta, R.; Lami, A.; Bloino, J.; Barone, V., “Effective method to compute Franck-Condon integrals for optical spectra of large molecules in solution,” J. Chem. Phys., 2007, 126, 084509: 1-13, DOI: 10.1063/1.2437197.

[Scalmani06] Scalmani, G.; Frisch, M. J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V., “Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model,” J. Chem. Phys., 2006, 124, 094107: 1-15, DOI: 10.1063/1.2173258.

[Scalmani10] Scalmani, G.; Frisch, M. J., “Continuous surface charge polarizable continuum models of solvation: I. General formalism,” J. Chem. Phys., 2010, 132, 114110: 1-15, DOI: 10.1063/1.3359469.

[Schalk10] Schalk, O.; Boguslavskiy, A.; Stolow, A., “Substituent Effects on Dynamics at Conical Intersections: Cyclopentadienes,” J. Phys. Chem. A, 2010, 114, 4058-64, DOI: 10.1021/jp911286s.

[Schellman73] Schellman, J. A., “Vibrational optical activity,” J. Chem. Phys., 1973, 58, 2882-86, DOI: 10.1063/1.1679592.

[Schiek07] Schiek, M.; Al-Shamery, K.; Lützen, A., “Synthesis of Symmetrically and Unsymmetrically para-Functionalized p-Quaterphenylenes,” Synthesis, 2007, 4, 613, DOI: 10.1055/s-2007-965891

[Schiek07a] Schiek, M., Organic Molecular Nanotechnology [PhD Thesis], University of Oldenburg, Institute of Pure and Applied Chemistry (Germany), 2007.

[Schiff68] Schiff, L. I., Quantum Mechanics; 3rd ed.; McGraw-Hill: New York, 1968.

[Schlegel82] Schlegel, H. B., “Optimization of Equilibrium Geometries and Transition Structures,” J. Comp. Chem., 1982, 3, 214-18, DOI: 10.1002/jcc.540030212.

[Schlegel82a] Schlegel, H. B.; Robb, M. A., “MC SCF gradient optimization of the 2CO –> H2 + CO transition structure,” Chem. Phys. Lett., 1982, 93, 43-46, DOI: 10.1016/0009-2614(82)85052-5.

[Schlegel84a] Schlegel, H. B., “Estimating the Hessian for gradient-type geometry optimizations,” Theoretical Chemistry Accounts, 1984, 66, 333-40, DOI: 10.1007/BF00554788.

[Schlegel88] Schlegel, H. B., “Møller-Plesset perturbation theory with spin projection,” J. Phys. Chem., 1988, 92, 3075-78, DOI: 10.1021/j100322a014.

[Schlegel91] Schlegel, H. B.; Frisch, M. J., “Computational Bottlenecks in Molecular Orbital Calculations” in Theoretical and Computational Models for Organic Chemistry; ed. Formosinho, S. J., Csizmadia, I. G., Arnaut, L. G., NATO-ASI Series C, vol. 339, Kluwer Academic: The Netherlands, 1991, pp. 5-33, DOI: 10.1007/978-94-011-3584-9_2.

[Schlegel91a] Schlegel, H. B.; McDouall, J. J., “Do you have SCF Stability and Convergence Problems?” in Computational Advances in Organic Chemistry; ed. Ögretir, C., Csizmadia, I. G., Kluwer Academic: The Netherlands, 1991, pp. 167-85, DOI: 10.1007/978-94-011-3262-6_2.

[Schmitt06] Schmitt, M.; Böhm, M.; Ratzer, C.; Krügler, D.; Kleinermanns, K.; Kalkman, I.; Berden, G.; Meetz, W. L., “Determining the intermolecular structure in the S0 and S1 states of the phenol dimer by rotationally resolved electronic spectroscopy,” ChemPhysChem, 2006, 7, DOI: 10.1002/cphc.200500670.

[Schnatter14] Schnatter, W. F. K.; Rogers, D. W.; Zavitsas, A. A., “Teaching Electrophilic Aromatic Substitution: Enthalpies of Hydrogenation of the Rings of C6H5X Predict Relative Reactivities; 13C NMR Shifts Predict Directing Effects of X,” J. Chem. Educ., 2014, DOI: 10.1021/ed3007742.

[Schrodinger26] Schrödinger, E., “Quantisierung als Eigenwertproblem,” Phys. Rev. précis (22 pgs):, 1926, 79, 361, DOI: 10.1002/andp.19263840404.

[Schultz93] Schultz, G.; Hargittai, I., “Molecular-Structure of N,N-Dimethylformamide from Gas-Phase Electron-Diffraction,” J. Phys. Chem., 1993, 97, 4966-69, DOI: 10.1021/j100121a018.

[Schwartz62] Schwartz, C., “Importance of Angular Correlations Between Atomic Electrons,” Phys. Rev., 1962, 126, 1015, DOI: 10.1103/PhysRev.126.1015

[Schwartz63] Schwartz, C., Methods in Computational Physics; ed. Alder, B. J., Fernback, S., Rotenberg, M., vol. 2, Academic Press: New York, 1963, pp. 271

[Schwerdtfeger11a] Schwerdtfeger, P., “The Pseudopotential Approximation in Electronic Structure Theory,” ChemPhysChem, 2011, 12, 3143-55, DOI: 10.1002/cphc.201100387.

[Scuseria88] Scuseria, G. E.; Janssen, C. L.; Schaefer III, H. F., “An efficient reformulation of the closed-shell coupled cluster single and double excitation (CCSD) equations,” J. Chem. Phys., 1988, 89, 7382-87, DOI: 10.1063/1.455269.

[Scuseria91] Scuseria, G. E., “Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: Theory and Applications to FOOF and Cr2,” J. Chem. Phys., 1991, 94, 442-47, DOI: 10.1063/1.460359.

[SDBS2336] “#2336 (o-nitroaniline),” Spectral Database for Organic Compounds (SDBS), National Institute of Advanced Industrial Science and Technology (AIST),

[Seeger77] Seeger, R.; Pople, J. A., “Self-Consistent Molecular Orbital Methods. 28. Constraints and Stability in Hartree-Fock Theory,” J. Chem. Phys., 1977, 66, 3045-50, DOI: 10.1063/1.434318.

[Sekino07] Sekino, H.; Maeda, Y.; Kamiya, M.; Hirao, K., “Polarizability and second hyperpolarizability evaluation of long molecules by the density functional theory with long-range correction,” J. Chem. Phys., 2007, 126, 014107, DOI: 10.1063/1.2428291.

[Sekino86] Sekino, H.; Bartlett, R. J., “Frequency-Dependent Nonlinear Optical-Properties of Molecules,” J. Chem. Phys., 1986, 85, 976-89, DOI: 10.1063/1.451255.

[Selander71] Selander, H.; Nilsson, J. L. G., “Tritium Exchange in Specifically Labelled Xylenols, Indanols and Tetrahydronaphthols and Their Methyl Ethers,” Acta Chem. Scand., 1971, 25, 1182-84, DOI: 10.3891/acta.chem.scand.25-1182.

[Sellgren10] Sellgren, K.; Werner, M. W.; Ingalls, J. G.; Smith, J. D. T.; Carleton, T. M.; Joblin, C., “C60 in Reflection Nebulae,” Astrophys. J. Lett., 2010, 722, L54-L57, DOI: 10.1088/2041-8205/722/1/L54.

[Senthilkumar13] Senthilkumar, L.; Umadevi, P.; Nithya, K. N. S.; Kolandaivel, P., “Density functional theory investigation of cocaine water complexes,” J. Mol. Model, 2013, 19, 3411, DOI: 10.1007/s00894-013-1866-0.

[SerranoPerez13] Serrano-Pérez, J. J.; de Vleeschouwer, F.; de Proft, F.; Mendive-Tapia, D.; Bearpark, M. J.; Robb, M. A., “How the Conical Intersection Seam Controls Chemical Selectivity in the Photocycloaddition of Ethylene and Benzene,” J. Org. Chem., 2013, 78, 1874-86, DOI: 10.1021/jo3017549

[Shaik92] Shaik, S.; Schlegel, H. B.; Wolfe, S., Theoretical Aspects of Physical Organic Chemistry: The SN2 mechanism; John Wiley & Sons: New York, 1992.

[Shelton82] Shelton, D. P.; Buckingham, A. D., “Optical second-harmonic generation in gases with a low-power laser,” Phys. Rev. A, 1982, 26, 2787, DOI: 10.1103/PhysRevA.26.2787

[Shelton94] Shelton, D. P.; Rice, J. E., “Measurements and Calculations of the Hyperpolarizabilities of Atoms and Small Molecules in the Gas Phase,” Chem. Rev., 1994, 94, 3-29, DOI: 10.1021/cr00025a001.

[Shi89] Shi, Z.; Boyd, R. J., “Transition State Electronic Structures in SN2 Reactions,” J. Am. Chem. Soc., 1989, 111, 1575-79, DOI: 10.1021/ja00187a007.

[Shuai91] Shuai, Z.; Brédas, J. L., “Static and Dynamic Third-Harmonic Generation in Long Polyacetylene and Polyparaphenylene Vinylene Chains,” Phys. Rev. B, 1991, 44, 5962, DOI: 10.1103/PhysRevB.44.5962

[Siegbahn81] Siegbahn, P. E. M.; Almlöf, J.; Heiberg, A.; Roos, B. O., “The complete active space SCF (CASSCF) method in a Newton-Raphson formulation with application to the HNO molecule,” J. Chem. Phys., 1981, 74, 2384-96, DOI: 10.1063/1.441359.

[Siegbahn84] Siegbahn, P. E. M., “A new direct CI method for large CI expansions in a small orbital space,” Chem. Phys. Lett., 1984, 109, 417-23, DOI: 10.1016/0009-2614(84)80336-X.

[Silverstein91] Silverstein, R. M.; Bassler, G. C.; Morrill, T. C., Spectrometric Identification of Organic Compounds, 5th, Wiley & Sons, Inc.: New York, 1991, pp. 236-39.

[Simon96] Simon, S.; Duran, M.; Dannenberg, J. J., “How does basis set superposition error change the potential surfaces for hydrogen bonded dimers?,” J. Chem. Phys., 1996, 105, 11024-31, DOI: 10.1063/1.472902.

[Singh84] Singh, U. C.; Kollman, P. A., “An approach to computing electrostatic charges for molecules,” J. Comp. Chem., 1984, 5, 129-45, DOI: 10.1002/jcc.540050204.

[Singh86] Singh, U. C.; Kollman, P. A., “A Combined ab initio Quantum-Mechanical and Molecular Mechanical Method for Carrying out Simulations on Complex Molecular Systems: Applications to the CH3Cl + Cl- Exchange-Reaction and Gas-Phase Protonation of Polyethers,” J. Comp. Chem., 1986, 7, 718-30, DOI: 10.1002/jcc.540070604.

[Slater74] Slater, J. C., The Self-Consistent Field for Molecules and Solids; McGraw-Hill: New York, 1974; Vol. 4.

[Sohn10] Sohn, W. Y.; Kim, T. W.; Lee, J. S., “Structure and Energetics of C60O: A Theoretical Study,” J. Phys. Chem., 2010, 114, 1939-43, DOI: 10.1021/jp9093386.

[Sondergaard11] Søndergaard, C. R.; Olsson, M. H. M.; Rostkowski, M.; Jensen, J. H., “Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values,” J. Chem. Theory and Comput., 2011, 7, 2284-95, DOI: 10.1021/ct200133y.

[Sonnenberg09] Sonnenberg, J. L.; Schlegel, H. B.; Hratchian, H. P., “Spin Contamination in Inorganic Chemistry Calculations” in Computational Inorganic and Bioinorganic Chemistry; ed. Soloman, E. I., Scott, R. A., B., K. R., John Wiley & Sons, Ltd: Chichester, 2009, pp. 173-86

[Sonnenberg09a] Sonnenberg, J. L.; Wong, K. F.; Voth, G. A.; Schlegel, H. B., “Distributed Gaussian Valence Bond Surface Derived from Ab Initio Calculations,” J. Chem. Theory and Comput., 2009, 5, 949-61, DOI: 10.1021/ct800477y.

[Stahelin93] Stähelin, M.; Moylan, C. R.; Burland, D. M.; Willetts, A.; Rice, J. E.; Shelton, D. P.; Donley, E. A., “A comparison of calculated and experimental hyperpolarizabilities for acetonitrile in gas and liquid phases,” J. Chem. Phys., 1993, 98, 5595, DOI: 10.1063/1.464904.

[Staley84] Staley, S. W.; Norden, T. D., “Synthesis and Direct Observation of Methylenecyclopropene,” J. Am. Chem. Soc., 1984, 106, 3699-700, DOI: 10.1021/ja00324a065.

[Stanton93] Stanton, J. F.; Bartlett, R. J., “Equation of motion coupled-cluster method: A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties,” J. Chem. Phys., 1993, 98, 7029-39, DOI: 10.1063/1.464746.

[Staroverov03] Staroverov, V. N.; Scuseria, G. E.; Tao, J.; Perdew, J. P., “Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes,” J. Chem. Phys., 2003, 119, 12129, DOI: 10.1063/1.1626543.

[Steel09] Steel, W. H.; Foresman, J. B.; Burden, D. K.; Lau, Y. Y.; Walker, R. A., “Solvation of Nitrophenol Isomers: Consequences for Solute Electronic Structure and Alkane/Water Partitioning,” J. Phys. Chem., 2009, 113, 759-66, DOI: 10.1021/jp805184w.

[Stephens01] Stephens, P. J.; Devlin, F. J.; Cheeseman, J. R.; Frisch, M. J., “Calculation of optical rotation using Density Functional Theory,” J. Phys. Chem. A, 2001, 105, 5356-71, DOI: 10.1021/jp0105138.

[Stephens03] Stephens, P. J.; Devlin, F. J.; Cheeseman, J. R.; Frisch, M. J.; Bortolini, O.; Besse, P., “Determination of Absolute Configuration Using Ab Initio Calculation of Optical Rotation,” Chirality, 2003, 15, S57-64, DOI: 10.1002/chir.10270.

[Stephens05] Stephens, P. J.; McCann, D. M.; Cheeseman, J. R.; Frisch, M. J., “Determination of absolute configurations of chiral molecules using ab initio time-dependent Density Functional Theory calculations of optical rotation: How reliable are absolute configurations obtained for molecules with small rotations?,” Chirality, 2005, 17, S52-64, DOI: 10.1002/chir.20109.

[Stephens05a] Stephens, P. J.; McCann, D. M.; Devlin, F. J.; Flood, T. C.; Butkus, E.; Stončius, S.; Cheeseman, J. R., “Determination of molecular structure using vibrational circular dichroism spectroscopy: The keto-lactone product of Baeyer-Villiger oxidation of (+)-(1R,5S)-bicyclo[3.3.1]nonane-2,7-dione,” J. Org. Chem., 2005, 70, 3903-13, DOI: 10.1021/jo047906y.

[Stephens07] Stephens, P. J.; Pan, J. J.; Devlin, F. J.; Krohn, K.; Kurtán, T., “Determination of the Absolute Configurations of Natural Products via Density Functional Theory Calculations of Vibrational Circular Dichroism, Electronic Circular Dichroism, and Optical Rotation: The Iridoids Plumericin and Isoplumericin,” J. Org. Chem., 2007, 72, 3521-36, DOI: 10.1021/jo070155q.

[Stephens12] Stephens, P. J.; Devlin, F. J.; Cheeseman, J. R., VCD Spectroscopy for Organic Chemists; CRC Press: Boca Raton, FL, 2012.

[Stephens85] Stephens, P. J., “Theory of vibrational circular dichroism,” J. Phys. Chem., 1985, 89, 748-52, DOI: 10.1021/j100251a006

[Stewart07] Stewart, J. J. P., “Optimization of parameters for semiempirical methods. V. Modification of NDDO approximations and application to 70 elements,” J. Mol. Model., 2007, 13, 1173-213, DOI: 10.1007/s00894-007-0233-4.

[Stewart89] Stewart, J. J. P., “Optimization of parameters for semiempirical methods. I. Method,” J. Comp. Chem., 1989, 10, 209-20, DOI: 10.1002/jcc.540100208.

[Stieglitz1896] Stieglitz, J., “On the ‘Beckmann Rearrangement’ I. Chlorimido-ethers,” Am. Chem. J., 1896, 18, 751-61.

[Stojanovic12] Stojanović, L., “Theoretical Study of Hyperfine Interactions in Small Arsenic-Containing Radicals,” J. Phys. Chem. A, 2012, 116, 8624-33, DOI: 10.1021/jp304786r.

[Stratmann98] Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J., “An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules,” J. Chem. Phys., 1998, 109, 8218-24, DOI: 10.1063/1.477483.

[Sustmann96] Sustmann, R.; Tappanchai, S.; Bandmann, H., “a(E)-1-Methoxy-1,3-butadiene and 1,1-Dimethoxy-1,3-butadiene in (4 + 2) Cycloadditions. A Mechanistic Comparison,” J. Am. Chem. Soc., 1996, 118, 12555, DOI: 10.1021/ja961390l.

[Sychrovsky00] Sychrovsky, V.; Gräfenstein, J.; Cremer, D., “Nuclear magnetic resonance spin-spin coupling constants from coupled perturbed density functional theory,” J. Chem. Phys., 2000, 113, 3530-47, DOI: 10.1063/1.1286806.

[Szabo96] Szabo, A.; Ostlund, N. S., Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory ; Dover, 1996.

[Takano05] Takano, Y.; Houk, K. N., “Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules,” J. Chem. Theory and Comput., 2005, 1, 70-77, DOI: 10.1021/ct049977a.

[Takashima78] Takashima, K.; Riveros, J., “Gas-phase pathways for ester hydrolysis,” J. Am. Chem. Soc., 1978, 100, 6128-32, DOI: 10.1021/ja00487a027.

[Tanaka97] Tanaka, K.; Sumiyoshi, Y.; Ohshima, Y.; Endo, Y.; Kawaguchi, K., “Pulsed discharge nozzle Fourier transform microwave spectroscopy of the propargyl radical (H2CCCH),” J. Chem. Phys., 1997, 197, 2728, DOI: 10.1063/1.474631.

[Tapia75] Tapia, O.; Goscinski, O., “Self-consistent reaction field theory of solvent effects,” Molecular Physics, 1975, 29, 1653-61, DOI: 10.1080/00268977500101461.

[Taylor10] Taylor, D. J.; Paterson, M. J., “Calculations of the low-lying excited states of the TiO2 molecule,” J. Chem. Phys., 2010, 133, 204302, DOI: 10.1063/1.3515477.

[Teale13] Teale, A. M.; Lutnæs, O. B.; Helgaker, T.; Tozer, D. J.; Gauss, J., “Benchmarking density-functional theory calculations of NMR shielding constants and spin-rotation constants using accurate coupled-cluster calculations,” The Journal of Chemical Physics, 2013, 138, 024111, DOI: 10.1063/1.4773016.

[Teller37] Teller, E., “The Crossing of Potential Surfaces,” J. Chem. Phys., 1937, 41, 109-16, DOI: 10.1021/j150379a010.

[Thompson14] Thompson, L. M.; Hratchian, H. P., “Spin projection with double hybrid density functional theory,” J. Chem. Phys., 2014, 141, 034108, DOI: 10.1063/1.4887361

[Thorvaldsen08] Thorvaldsen, A. J.; Ruud, K.; Kristensen, K.; Jørgensen, P.; Coriani, S., “A density matrix-based quasienergy formulation of the Kohn-Sham density functional response theory using perturbation- and time-dependent basis sets,” J. Chem. Phys., 2008, 129, 214108, DOI: 10.1063/1.2996351.

[Tomasi05] Tomasi, J.; Mennucci, B.; Cammi, R., “Quantum mechanical continuum solvation models,” Chem. Rev., 2005, 105, 2999-3093, DOI: 10.1021/cr9904009.

[Tondo05] Tondo, D. W.; Pliego Jr., J. R., “Modeling Protic to Dipolar Aprotic Solvent Rate Acceleration and Leaving Group Effects in SN2 Reactions: A theoretical study of the reaction of acetate ion with ethyl halides in aqueous and dimethyl sulfoxide solutions,” J. Phys. Chem. A, 2005, 109, 507-11, DOI: 10.1021/jp047386a.

[Torrent00] Torrent, M.; Solà, M.; Frenking, G., “Theoretical Studies of Some Transition-Metal-Mediated Reactions of Industrial and Synthetic Importance,” Chem. Rev., 2000, 100, 439-93, DOI: 10.1021/cr980452i.

[Townsend04] Townsend, D.; Lahankar, S. A.; Chambreau, S. D.; Suits, A. G.; Zhang, X.; Rheinecker, J.; Harding, L. B.; Bowman, J. M., “The Roaming Atom: Straying from the reaction path in formaldehyde decomposition,” Science, 2004, 306, 1158-61, DOI: 10.1126/science.1104386.

[Truong97] Truong, T. N.; Truong, T. T.; Stefanovich, E. V., “A general methodology for quantum modeling of free-energy profile of reactions in solution: An application to the Menshutkin NH3 + CH3Cl reaction in water,” J. Chem. Phys., 1997, 107, 1881, DOI: 10.1063/1.474538.

[VanCaillie00] Van Caillie, C.; Amos, R. D., “Geometric derivatives of density functional theory excitation energies using gradient-corrected functionals,” Chem. Phys. Lett., 2000, 317, 159-64, DOI: 10.1016/S0009-2614(99)01346-9.

[VanCaillie99] Van Caillie, C.; Amos, R. D., “Geometric derivatives of excitation energies using SCF and DFT,” Chem. Phys. Lett., 1999, 308, 249-55, DOI: 10.1016/S0009-2614(99)00646-6.

[VanLonkhuyzen84] Lonkhuyzen, H. v.; Lange, C. A. d., “High-resolution UV photoelectron spectroscopy of diatomic halogens,” Chem. Phys., 1984, 89, 313-22, DOI: 10.1016/0301-0104(84)85319-7.

[Vogtle91] Vögtle, F.; Kadei, K., “Großflächige Makrocyclen aus p-Quaterphenyl-Bauteilen (Flat Macrocycles Based on p-Quaterphenyl Units),” Chem. Ber., 1991, 124, 903, DOI: 10.1002/cber.19911240434.

[Vosko80] Vosko, S. H.; Wilk, L.; Nusair, M., “Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis,” Can. J. Phys., 1980, 58, 1200-11, DOI: 10.1139/p80-159.

[Vreven06] Vreven, T.; Byun, K. S.; Komáromi, I.; Dapprich, S.; Montgomery Jr., J. A.; Morokuma, K.; Frisch, M. J., “Combining quantum mechanics methods with molecular mechanics methods in ONIOM,” J. Chem. Theory and Comput., 2006, 2, 815-26, DOI: 10.1021/ct050289g.

[Vreven06b] “Hybrid Methods: ONIOM (QM:MM) and QM/MM” in Vreven, T.; Morokuma, K., Annual Reports in Computational Chemistry, Elsevier: 2006, Vol. 2, pp. 35-51.

[Vreven08] “The ONIOM Method for Layered Calculations” in Vreven, T.; Morokuma, K., Continuum Solvation Models in Chemical Physics: From Theory to Applications, Wiley: 2008

[Vydrov06a] Vydrov, O. A.; Heyd, J.; Krukau, A.; Scuseria, G. E., “Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals,” J. Chem. Phys., 2006, 125, 074106, DOI: 10.1063/1.2244560.

[Wachters70] Wachters, A. J. H., “Gaussian basis set for molecular wavefunctions containing third-row atoms,” J. Chem. Phys., 1970, 52, 1033, DOI: 10.1063/1.1673095

[Wadt85] Wadt, W. R.; Hay, P. J., “Ab initio effective core potentials for molecular calculations: potentials for main group elements Na to Bi,” J. Chem. Phys., 1985, 82, 284-98, DOI: 10.1063/1.448800.

[Wallmann08] Wallmann, I.; Schiek, M.; Koch, R.; Lützen, A., “Synthesis of Monofunctionalized p-Quaterphenyls,” Synthesis, 2008, 15, 2446, DOI: 10.1055/s-2008-1067163.

[Ward78] Ward, J. F.; Elliott, D. S., “Measurements of molecular hyperpolarizabilities for ethylene, butadiene, hexatriene, and benzene,” J. Chem. Phys., 1978, 69, 5438, DOI: 10.1063/1.436534.

[Warshel76] Warshel, A.; Levitt, M., “Theoretical Studies of Enzymatic Reactions: Dielectric, Electrostatic and Steric Stabilization of Carbonium Ion in the Reaction of Lysozyme,” J. Mol. Biol., 1976, 103, 227-49, DOI: 10.1016/0022-2836(76)90311-9.

[Webster07] Webster, R. D., “New Insights into the Oxidative Electrochemistry of Vitamin E,” Acc. Chem. Res., 2007, 40, 251, DOI: 10.1021/ar068182a.

[Wedig86] Wedig, U.; Dolg, M.; Stoll, H.; Preuss, H., “Energy-Adjusted Pseudopotentials For Transition-Metal Elements” in Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry. [Proceesings of the NATO Advanced Research Workshop and 40th International Meeting of the Societe de Chimie Physique, Strasbourg, France, 16-20 Sept. 1985]; ed. Veillard, A., D. Reidel Pub. Co.: Dordrecht, The Netherlands, 1986, pp. 79-90

[Weigend05] Weigend, F.; Ahlrichs, R., “Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy,” Phys. Chem. Chem. Phys., 2005, 7, 3297-305, DOI: 10.1039/b508541a

[Weigend06] Weigend, F., “Accurate Coulomb-fitting basis sets for H to Rn,” Phys. Chem. Chem. Phys., 2006, 8, 1057-65, DOI: 10.1039/B515623H

[Weinhold88] Weinhold, F.; Carpenter, J. E., “The Natural Bond Orbital Lewis Structure Concept for Molecules, Radicals, and Radical Ions” in The Structure of Small Molecules and Ions; ed. Naaman, R., Vager, Z., Plenum: 1988, pp. 227-36

[Werner04] Werner, M. W.; Uchida, K. I.; Sellgren, K.; Marengo, M.; Gordon, K. D.; Morris, P. W.; Houck, J. R.; Stansberry, J. A., “New Infrared Emission Features and Spectral Variations in NGC 7023,” Astrophys. J., Suppl. Ser., 2004, 154, 309-14, DOI: 10.1086/422413.

[West09] West, M. J.; Went, M. J., “The spectroscopic detection of drugs of abuse in fingerprints after development with powders and recovery with adhesive lifters,” Spectrochim. Acta, Part A, 2009, 71, 1984-88, DOI: 10.1016/j.saa.2008.07.024.

[Wiberg04c] Wiberg, K. B.; Hammer, J. D.; Zilm, K. W.; Keith, T. A.; Cheeseman, J. R.; Duchamp, J. C., “NMR chemical shifts: Substituted acetylenes,” J. Org. Chem., 2004, 69, 1086-96, DOI: 10.1021/jo030258i.

[Wiberg07] Wiberg, K. B.; Wilson, S. M.; Wang, Y.-g.; Vaccaro, P. H.; Cheeseman, J. R.; Luderer, M. R., “Effect of Substituents and Conformations on the Optical Rotations of Cyclic Oxides and Related Compounds. Relationship between the Anomeric Effect and Optical Rotation,” J. Org. Chem., 2007, 72, 6206-14, DOI: 10.1021/jo070816j.

[Wiberg82] Wiberg, K. B.; Walker, F. H., “[1.1. 1] Propellane,” Journal of the American Chemical Society, 1982, 104, 5239-40, DOI: 10.1021/ja00383a046.

[Wiberg85] Wiberg, K. B.; Dailey, W. P.; Walker, F. H.; Waddell, S. T.; Crocker, L. S.; Newton, M., “Vibrational Spectrum, Structure, and Energy of [1.1.1]propellane,” J. Am. Chem. Soc., 1985, 107, 7247-57, DOI: 10.1021/ja00311a003.

[Wiberg86] Wiberg, K. B.; Matturro, M. G.; Okarma, P. J.; Jason, M. E.; Dailey, W. P.; Burgmaier, G. J.; Bailey, W. F.; Warner, P., “Bicyclo[2.2.0]hex-1(4)-ene,” Tetrahedron, 1986, 42, 1895-902, DOI: 10.1016/S0040-4020(01)87609-2

[Wiberg87] Wiberg, K. B.; Murcko, M. A., “Rotational Barriers. 1. 1,2-Dihaloethanes,” J. Phys. Chem., 1987, 91, 3616-20, DOI: 10.1021/j100297a030.

[Wiberg91] Wiberg, K. B.; Crocker, L. S.; Morgan, K. M., “Thermochemical Studies of Carbonyl Compounds. 5. Enthalpies of Reduction of Carbonyl Groups,” J. Am. Chem. Soc., 1991, 113, 3447-50, DOI: 10.1021/ja00009a033.

[Wiberg92] Wiberg, K. B.; Hadad, C. M.; LePage, T. J.; Breneman, C. M.; Frisch, M. J., “An Analysis of the Effect of Electron Correlation on Charge Density Distributions,” J. Phys. Chem., 1992, 96, 671-79, DOI: 10.1021/j100181a030.

[Wiberg92b] Wiberg, K. B.; Rosenberg, R. E., “Infrared Intensities: Cyclobutene: A Normal-Coordinate Analysis and Comparison with Cyclopropene,” J. Phys. Chem., 1992, 96, 8282-92, DOI: 10.1021/j100200a016.

[Wiberg92c] Wiberg, K. B.; Rosenberg, R. E.; Waddell, S. T., “Infrared Intensities: Bicyclo[1.1.1]pentane: A Normal-Cöordinate Analysis and Comparison with [1.1.1]propellane,” J. Phys. Chem., 1992, 96, 8293-303, DOI: 10.1021/j100200a017.

[Wiberg92d] Wiberg, K. B.; Hadad, C. M.; Rablen, P. R.; Cioslowski, J., “Substituent Effects. 4. Nature of Substituent Effects at Carbonyl Groups,” J. Am. Chem. Soc., 1992, 114, 8644-54, DOI: 10.1021/ja00048a044.

[Wiberg95] Wiberg, K. B.; Cheeseman, J. R.; Ochterski, J. W.; Frisch, M. J., “Substituent Effects. 6. Heterosubstituted allyl radicals: Comparison with substituted allyl cations and anions,” J. Am. Chem. Soc., 1995, 117, 6535-43, DOI: 10.1021/ja00129a018.

[Wiberg95c] Wiberg, K. B.; Thiel, Y.; Goodman, L.; Leszczynski, J., “Acetaldehyde: Harmonic Frequencies, Force Field, and Infrared Intensities,” J. Phys. Chem., 1995, 99, 13850, DOI: 10.1021/j100038a016.

[Wilson05] Wilson, S. M.; Wiberg, K. B.; Cheeseman, J. R.; Frisch, M. J.; Vaccaro, P. H., “Nonresonant optical activity of isolated organic molecules,” J. Phys. Chem. A, 2005, 109, 11752-64, DOI: 10.1021/jp054283z.

[Winnewisser71] Winnewisser, G.; Maki, A. G.; Johnson, D. R., “Rotational constants for HCN and DCN,” J. Mol. Spectrosc., 1971, 39, 149, DOI: 10.1016/0022-2852(71)90286-4.

[Wohar91] Wohar, M. M.; Jagodzinski, P. W., “Infrared Spectra of 2CO, 213CO, 2CO, and 213CO and Anomalous Values in Vibrational Force Fields,” J. Mol. Spectrosc., 1991, 148, 13-19, DOI: 10.1016/0022-2852(91)90030-E.

[Wolinski90] Wolinski, K.; Hilton, J. F.; Pulay, P., “Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations,” J. Am. Chem. Soc., 1990, 112, 8251-60, DOI: 10.1021/ja00179a005.

[Wong91a] Wong, M. W.; Wiberg, K. B.; Frisch, M. J., “Hartree-Fock Second Derivatives and Electric Field Properties in a Solvent Reaction Field: Theory and Application,” J. Chem. Phys., 1991, 95, 8991-98, DOI: 10.1063/1.461230.

[Wong96] Wong, M. W., “Vibrational frequency prediction using density functional theory,” Chem. Phys. Lett., 1996, 256, 391-99, DOI: 10.1016/0009-2614(96)00483-6.

[Wong98] Wong, M. W.; Radom, L., “Radical Addition to Alkenes: Further Assessment of Theoretical Procedures,” J. Phys. Chem. A, 1998, 102, 2237-45, DOI: 10.1021/jp973427+.

[Woon93] Woon, D. E.; Dunning Jr., T. H., “Gaussian-basis sets for use in correlated molecular calculations. 3. The atoms aluminum through argon,” J. Chem. Phys., 1993, 98, 1358-71, DOI: 10.1063/1.464303.

[Xu08] Xu, W.; Peng, B.; Chen, J.; Liang, M.; Cai, F., “New Triphenylamine-Based Dyes for Dye-Sensitized Solar Cells,” J. Phys. Chem. C, 2008, 112, 874-80, DOI: 10.1021/jp076992d.

[Yamamoto96] Yamamoto, N.; Vreven, T.; Robb, M. A.; Frisch, M. J.; Schlegel, H. B., “A Direct Derivative MC-SCF Procedure,” Chem. Phys. Lett., 1996, 250, 373-78, DOI: 10.1016/0009-2614(96)00027-9.

[Yanai04] Yanai, T.; Tew, D.; Handy, N., “A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP),” Chem. Phys. Lett., 2004, 393, 51-57, DOI: 10.1016/j.cplett.2004.06.011.

[Yang14] Yang, Y.; Ratner, M. A.; Schatz, G. C., “Multireference Ab Initio Study of Ligand Field d-d Transitions in Octahedral Transition-Metal Oxide Clusters,” J. Phys. Chem. C, 2014, (in press), DOI: 10.1021/jp5052672.

[Yao09] Yao, W. W.; Peng, H. M.; Webster, R. D., “Electrochemistry of α-Tocopherol (Vitamin E) and α-Tocopherol Quinone Films Deposited on Electrode Surfaces in the Presence and Absence of Lipid Multilayers,” J. Phys. Chem. C, 2009, 113, 21805, DOI: 10.1021/jp9079124.

[Yencha95] Yencha, A. J.; Hopkirk, A.; Hiraya, A.; Donovan, R. J.; Goode, J. G.; Maier, R. R. J.; King, G. C.; Kvaran, A., “Threshold Photoelectron Spectroscopy of Cl2 and Br2 up to 35 eV,” J. Phys. Chem., 1995, 99, 7231, DOI: 10.1021/j100019a004.

[York99] York, D. M.; Karplus, M., “Smooth solvation potential based on the conductor-like screening model,” J. Phys. Chem. A, 1999, 103, 11060-79, DOI: 10.1021/jp992097l.

[Zeng04] Zeng, Y.; Sun, Q.; Meng, L.; Zheng, S.; Wang, D., “Theoretical calculational studies on the mechanism of thermal dissociations for RN3 ( R=CH3, CH3CH2, (CH3)2CH, (CH3)3C ),” Chem. Phys. Lett., 2004, 390, 362, DOI: 10.1016/j.cplett.2004.04.045.

[Zerner91] “Semi Empirical Molecular Orbital Methods” in Zerner, M. C., Reviews of Computational Chemistry, VCH Publishing: New York, 1991, Vol. 2, pp. 313-66.

[Zhang98] Zhang, L.; Hermans, J., “Hydrophilicity of cavities in proteins,” Proteins, 1998, 24, 433-38, J. Am. Chem. Soc., 1996, 118, 437-39, DOI: 10.1021/ja953085q.